OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 15314–15323

Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence

Luigi Moretti and Vito Mocella  »View Author Affiliations


Optics Express, Vol. 15, Issue 23, pp. 15314-15323 (2007)
http://dx.doi.org/10.1364/OE.15.015314


View Full Text Article

Enhanced HTML    Acrobat PDF (650 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate from a theoretical point of view the photonic properties of a two dimensional photonic aperiodic crystal. These structures are obtained by removing the lattice points from a square arrangement, following the inflation rules emerging from the Thue-Morse sequence. The photonic bandgap analysis is performed by means of the density of states calculation. The mechanism of bandgap formation is investigated adopting the single scattering model, and the Mie scattering. The electromagnetic field distribution can be represented as quasi-localized states. Finally, a generalized method to obtain aperiodic photonic structures has been proposed.

© 2007 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(260.2110) Physical optics : Electromagnetic optics
(160.5298) Materials : Photonic crystals

ToC Category:
Materials

History
Original Manuscript: July 31, 2007
Revised Manuscript: September 29, 2007
Manuscript Accepted: October 1, 2007
Published: November 2, 2007

Citation
Luigi Moretti and Vito Mocella, "Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence," Opt. Express 15, 15314-15323 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15314


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486 (1987). [CrossRef] [PubMed]
  3. K. Inoue, and K. Ohtaka, Photonic Crystals-Physics, Fabrication and Applications, (Springer-Verlag, Berlin, 2004).
  4. D. Shechtman, I. Blech, and D. Gratias, "Metallic phase with long-range orientational order and no translational symmetry," Phys. Rev. Lett. 53, 1951 (1984). [CrossRef]
  5. Discussions on "What is a crystal?," Z. Kristallog. 222, 308-319 (2007).
  6. Y. S. Chan, C. T. Chan and Z. Y. Liu, "Photonic Band Gaps in Two Dimensional Photonic Quasicrystals," Phys. Rev. Lett. 80, 956 (1998). [CrossRef]
  7. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg and M. C. Netti, "Complete photonic bandgaps in 12-fold symmetric quasicrystals," Nature 404, 740 (2000). [CrossRef] [PubMed]
  8. R. Lifshitz, A. Arie, and A. Bahabad, "Photonic Quasicrystals for Nonlinear Optical Frequency Conversion," Phys. Rev. Lett. 95, 133901 (2005). [CrossRef] [PubMed]
  9. A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, "Band Gap Formation and Multiple Scattering in Photonic Quasicrystals with a Penrose-Type Lattice," Phys. Rev. Lett. 94, 183903 (2005). [CrossRef] [PubMed]
  10. E. Maciá, "The role of aperiodic order in science and technology," Rep. Prog. Phys. 69, 397 (2006). [CrossRef]
  11. W. Steurer and D. Sutter-Widmer, "Photonic and phononic quasicrystals," J. Phys. D 40, R229 (2007). [CrossRef]
  12. T. Fujiwara, M. Kohmoto, and T. Tokihiro, "Multifractal wave functions on a Fibonacci lattice," Phys. Rev. B 40, 7413 (1989). [CrossRef]
  13. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, "Light Transport through the Band-Edge States of Fibonacci Quasicrystals," Phys. Rev. Lett. 90, 055501 (2003). [CrossRef] [PubMed]
  14. N. Liu, "Propagation of light waves in Thue-Morse dielectric multilayers," Phys. Rev. B 55, 3543 (1997). [CrossRef]
  15. L. Moretti, I. Rea, L. Rotiroti, I. Rendina, G. Abbate, A. Marino, and L. De Stefano, "Photonic band gaps analysis of Thue-Morse multilayers made of porous silicon," Opt. Express 14, 6264-6272 (2006). [CrossRef] [PubMed]
  16. X. Jiang, Y. Zhang, S. Feng, K. C. Huang, Y. Yi, and J. D. Joannopoulos, "Photonic band gaps and localization in the Thue-Morse structures," Appl. Phys. Lett. 86, 201110 (2005). [CrossRef]
  17. L. Dal Negro, M. Stolfi, Y. Yi, J. Michel, X. Duan, L. C. Kimerling, J. LeBlanc and J. Haavisto, "Photon band gap properties and omnidirectional reflectance in Si/SiO2 Thue-Morse quasicrystals," Appl. Phys. Lett. 84, 5186 (2004). [CrossRef]
  18. L. Dal Negro, J. H. Yi, V. Nguyen, Y. Yi, J. Michel, and L. C. Kimerling, "Spectrally enhanced light emission from aperiodic photonic structures," Appl. Phys. Lett. 86, 261905 (2005). [CrossRef]
  19. C. T. Chan, Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B 51, 16635 (1995). [CrossRef]
  20. Z. Cheng, R. Savit, and R. Merlin, "Structure and electronic properties of Thue-Morse lattices," Phys. Rev. B 37, 4375 (1988). [CrossRef]
  21. C. Godrèche and J. M. Luck, "Multifractal analysis in reciprocal space and the nature of the Fourier transform of self-similar structures," J. Phys A 23, 3769 (1990). [CrossRef]
  22. International Union of Crystallography," Report of the Executive Committee for 1991," Acta Crystallographica A 48, 922.
  23. R. Lifshitz, "The square Fibonacci tiling," J. All. Comp. 342, 186 (2002). [CrossRef]
  24. We underline the fact that x and y coordinates of RTM are independent of each other, therefore the 2D calculation is performed by using independent 1D computations.
  25. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, "Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials," Phys. Rev. B 61, 13458 (2000). [CrossRef]
  26. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, Cambridge England 1999) 7th ed.
  27. C. Rockstuhl, U. Peschel, and F. Lederer, "Correlation between single-cylinder properties and bandgap formation in photonic structures," Opt. Lett. 31, 1741-1743 (2006). [CrossRef] [PubMed]
  28. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, 1998). [CrossRef]
  29. K. Wang, S. David, A. Chelnokov, and J. M. Lourtioz, "Photonic band gaps in quasicrystal-related approximant structures," J. Mod. Opt. 50, 2095 (2003).
  30. H. Altug and J. Vučkovic, "Two-dimensional coupled photonic crystal resonator arrays," Appl. Phys. Lett. 84, 161 (2004). [CrossRef]
  31. K. Nozaki and T. Baba, "Quasiperiodic photonic crystal microcavity lasers," Appl. Phys. Lett. 84, 4875 (2004). [CrossRef]
  32. Y. Wang, X. Hu, X. Hu, B. Cheng, and D. Zhang, "Localized modes in defect-free dodecagonal quasiperiodic photonic crystals," Phys. Rev. B 68, 165106 (2003). [CrossRef]
  33. S. Even-Dar Mandel, R. Lifshitz, "Electronic energy spectra and wave functions on the square Fibonacci tiling," Philos. Mag. 86, 759 (2006) [CrossRef]
  34. A. Bovier and J. M. Ghez, "Remarks on the spectral properties of tight-binding and Kronig-Penney models with substitution sequences," J. Phys A 28, 2313 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited