OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 15342–15350

Slow to superluminal light waves in thin 3D photonic crystals

J.F. Galisteo-López, M. Galli, A. Balestreri, M. Patrini, L.C. Andreani, and C. López  »View Author Affiliations

Optics Express, Vol. 15, Issue 23, pp. 15342-15350 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (986 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Phase measurements on self-assembled three-dimensional photonic crystals show that the group velocity of light can flip from small positive (slow) to negative (superluminal) values in samples of a few μm size. This phenomenon takes place in a narrow spectral range around the second-order stop band and follows from coupling to weakly dispersive photonic bands associated with multiple Bragg diffraction. The observations are well accounted for by theoretical calculations of the phase delay and of photonic states in the finite-sized systems.

© 2007 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(260.2030) Physical optics : Dispersion

ToC Category:
Photonic Crystals

Original Manuscript: September 17, 2007
Revised Manuscript: October 23, 2007
Manuscript Accepted: October 23, 2007
Published: November 2, 2007

J. F. Galisteo-López, M. Galli, A. Balestreri, M. Patrini, L. C. Andreani, and C. López, "Slow to superluminal light waves in thin 3D photonic crystals," Opt. Express 15, 15342-15350 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Brillouin and A. Sommerfeld, Wave Propagation and Group Velocity (Academic Press, New York, 1960).
  2. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and Slow Light Propagation in a Room-Temperature Solid," Science 301, 20-202 (2003). [CrossRef]
  3. S. Chu and S. Wong, "Linear pulse propagation in an absorbing medium," Phys. Rev. Lett. 48, 738-741 (1981). [CrossRef]
  4. A. M. Steinberg, P. G. Kwiat and R. Y. Chiao, "Measurement of the Single-Photon Tunneling Time," Phys. Rev. Lett. 71, 708-711 (1993). [CrossRef] [PubMed]
  5. L. J. Wang, A. Kuzmich and A. Dogariu, "Gain-assisted superluminal light propagation," Nature 406, 277-279 (2000). [CrossRef] [PubMed]
  6. A. Dogariu, A. Nahata, R. A. Linke, L. J. Wang and R. Trebino, "Optical pulse propagation through metallic nano-apertures," Appl. Phys. B 74, S69-S73 (2002). [CrossRef]
  7. M. D. Stenner, D. J. Gauthier and M. A. Neifeld, "The speed of information in a ‘fast-light’ optical medium," Nature 425, 695-698 (2003). [CrossRef] [PubMed]
  8. G. Nimtz, "Superluminal speed of information?," Nature 429, 6987 (2004). [CrossRef]
  9. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science 312, 892-894 (2006). [CrossRef] [PubMed]
  10. E.H. El Boudouti, N. Fettouhi, A. Akjouj, B. Djafari-Rouhani, J. O. Vasseur, L. Dobrzynski and J. Zemmouri, "Experimental and theoretical evidence for the existence of photonic bandgaps and selective transmission in serial loop structures," J. Appl. Phys. 95, 1102-1113 (2004). [CrossRef]
  11. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically Induced Transparency: Propagation Dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995). [CrossRef] [PubMed]
  12. L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594-598 (1999). [CrossRef]
  13. Yu. A. Vlasov, M. O’Boyle, H. F. Hamann and S. J. McNabb, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005). [CrossRef] [PubMed]
  14. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, Berlin, 2001).
  15. C. López, "Materials aspects of photonic crystals," Adv. Mater. 15, 1679-1704 (2003). [CrossRef]
  16. Yu. A. Vlasov, S. Petit, G. Klein, B. Honerlage and C. Hirlimann, "Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal," Phys. Rev. E 60, 1030-1035 (1999). [CrossRef]
  17. A. Imhof, W. L. Vos, R. Sprik and A. Lagendijk, "Large dispersive effects near the band edges of photonic crystals," Phys. Rev. Lett. 83, 2942-2945 (1999). [CrossRef]
  18. G. von Freymann, S. John, S. Wong, V. Kitaev and G. A. Ozin, "Measurement of group velocity dispersion for finite size three-dimensional photonic crystals in the near-infrared spectral region," Appl. Phys. Lett. 86, 053108 (2005). [CrossRef]
  19. J. F. Galisteo-López, M. Galli, M. Patrini, A. Balestreri, L. C. Andreani and C. López, "Effective refractive index and group velocity determination of three-dimensional photonic crystals by means of white light interferometry," Phys. Rev. B 73, 125103 (2006). [CrossRef]
  20. Yu. A. Vlasov, S. Fan and D. J. Norris, "Stop-band mediated diffraction," presented at the International Workshops on Photonic and Electromagnetic Crystal Structures (PECS 4), Los Angeles, USA, 2002.
  21. G. Von Freymann, JS. ohn, S. Wong, N. Tétreault, V. Kitaev, and G. A. Ozin, "Group velocity dispersion measurements of 3D photonic crystals for the NIR spectral region: the influence of finite size and anomalous dispersion of the higher bands," presented in International Workshops on Photonic and Electromagnetic Crystal Structures (PECS 5), Kyoto, Japan, 2004.
  22. J. F. Galisteo-López and C. López, "High-energy optical response of artificial opals," Phys. Rev. B 70, 035108 (2004). [CrossRef]
  23. F. García-Santamaría, J. F. Galisteo-López, P. V. Braun and C. López, "Optical diffraction and high-energy features in three-dimensional photonic crystals," Phys. Rev. B 71, 195112 (2005). [CrossRef]
  24. E. Pavarini, L. C. Andreani, C. Soci, M. Galli, F. Marabelli, D. Comoretto, "Band structure and optical properties of opal photonic crystals," Phys. Rev. B 72, 195112 (2005). [CrossRef]
  25. J. F. Galisteo-López, E. Palacios-Lidón, E. Castillo-Martinez and C. López, "Optical study of the pseudogap in thickness and orientation controlled artificial opals," Phys. Rev. B 68, 115109 (2003). [CrossRef]
  26. M. Galli, F. Marabelli, G. Guizzetti, "Direct measurement of refractive-index dispersion of transparent media by white-light interferometry," Appl. Opt. 42, 3910-3914 (2003). [CrossRef] [PubMed]
  27. D. M. Whittaker and I. S. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999). [CrossRef]
  28. A. Balestreri, L. C. Andreani and M. Agio, "Optical properties and diffraction effects in opal photonic crystals," Phys. Rev. E 74, 036603 (2006). [CrossRef]
  29. K. M. Ho, C. T. Chan and C. M. Soukoulis, "Existence of a Photonic Gap in Periodic Dielectric Structures," Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  30. Y. A. Vlasov, X. Z. Bo, J. C. Sturn and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001). [CrossRef] [PubMed]
  31. D. R. Solli, C. F. McCormick, C. Ropers, J. J. Morehead, R. Y. Chiao and J. M. Hickmann, "Demonstration of superluminal effects in an absorptionless, nonreflective system," Phys. Rev. Lett 91, 143906 (2003). [CrossRef] [PubMed]
  32. F. García-Santamaría, M. Ibisate, I. Rodríguez, F. Meseguer and C. López, "Photonic bands engineering in opals by growth of Si/Ge multilayer shells," Adv. Mater. 15, 788-792 (2003). [CrossRef]
  33. Notice that the calculations of Fig. 4 are done for a non-relaxed FCC lattice, while those in Fig. 1(d) include material dispersion and a small in-plane relaxation in order to compare with the experiments.
  34. L. Bechger, P. Lodahl and W. L. Vos, "Directional fluorescence spectra of laser dye in opal and inverse opal photonic crystals," J. Phys. Chem. B 109, 9980-9988 (2005). [CrossRef]
  35. M. Scharrer, A. Yamilov, X. H. Wu, H. Cao and R. P. H. Chang, "Ultraviolet lasing in high-order bands of three-dimensional ZnO photonic crystals," Appl. Phys. Lett. 88, 201103 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited