OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 15464–15479

Processing advantages of linear chirped fiber Bragg gratings in the time domain realization of optical frequency-domain reflectometry

R. E. Saperstein, N. Alic, S. Zamek, K. Ikeda, B. Slutsky, and Y. Fainman  »View Author Affiliations


Optics Express, Vol. 15, Issue 23, pp. 15464-15479 (2007)
http://dx.doi.org/10.1364/OE.15.015464


View Full Text Article

Enhanced HTML    Acrobat PDF (748 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The inclusion of a linear chirped fiber Bragg grating for short pulse dispersion is shown to enhance the time domain realization of optical frequency-domain reflectometry. A low resolution demonstrator is constructed with single surface scans containing 140 resolvable spots. The system dynamic range meets that shown in earlier demonstrations without digital post-processing for signal linearization. Using a conjugate pair of chirped pulses created by the fiber grating, ranging is performed with position and velocity information decoupled. Additionally, by probing the target with short pulses and introducing grating dispersion just before photodetection, velocity immune ranging is demonstrated.

© 2007 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(280.3400) Remote sensing and sensors : Laser range finder
(320.1590) Ultrafast optics : Chirping

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 4, 2007
Revised Manuscript: November 5, 2007
Manuscript Accepted: November 6, 2007
Published: November 7, 2007

Citation
R. E. Saperstein, N. Alic, S. Zamek, K. Ikeda, B. Slutsky, and Y. Fainman, "Processing advantages of linear chirped fiber Bragg gratings in the time domain realization of optical frequency-domain reflectometry," Opt. Express 15, 15464-15479 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15464


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Uttam and B. Culshaw, "Precision time domain reflectometry in optical fiber systems using a frequency modulated continuous wave ranging technique," J. Lightwave Technol. 3,971-977 (1985). [CrossRef]
  2. E. Arons, E. N. Leith, A-C Tien, and R. Wagner, "High-resolution optical chirped pulse gating," Appl. Opt. 36, 2603-2608 (1997). [CrossRef] [PubMed]
  3. B. L. Stann, A. Abou-Auf; K. Aliberti; J. Dammann; M. Giza; G. Dang; G. Ovrebo; B. Redman; W. Ruff; and D. Simon, "Research progress on a focal plane array ladar system using chirped amplitude modulation," Proc. SPIE 5086, 47-57 (2003). [CrossRef]
  4. S. Yun, G. Tearney, J. de Boer, N. Iftimia, and B. Bouma, "High-speed optical frequency-domain imaging," Opt. Express 11, 2953-2963 (2003). [CrossRef] [PubMed]
  5. R. Huber, M. Wojtkowski, K. Tiara, J. G. Fujimoto, and K. Hsu, "Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles," Opt. Express. 13, 3513-3528 (2005). [CrossRef] [PubMed]
  6. S. Moon and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Opt. Express 14,11575-11584 (2006). [CrossRef] [PubMed]
  7. Y. Park, T-J Ahn, J-C Kieffer, and J. Azaña, "Optical frequency domain reflectometry based on real-time Fourier transformation," Opt. Express 15, 4598-4617 (2007). [CrossRef]
  8. J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim, "The theory and design of chirp radars," Bell Syst. Tech. J. 39,745-808 (1960).
  9. D. A. Ausherman, A. Kozma, J. L. Walker, H. M. Jones, and E. C. Poggio, "Developments in radar imaging," IEEE Trans. Aerosp. Electron. Syst. AES-20,382-384 (1984). [CrossRef]
  10. M. Haner and W. S. Warren, "Synthesis of crafted optical pulses by time domain modulation in a fiber-grating compressor," Appl. Phys. Lett. 52, 1548-1550 (1988). [CrossRef]
  11. A. M. Weiner and J. P. Heritage, U.S. Patent No. 4,928,316, "Optical systems and methods based upon temporal stretching, modulation, and recompression of ultrashort pulses.
  12. R. E. Saperstein, N. Alic, D. Panasenko, R. Rokitski, and Y. Fainman, "Time-domain waveform processing using chromatic dispersion for temporal shaping of optical pulses," J. Opt. Soc. Am. B 22, 2427-2436 (2005). [CrossRef]
  13. R. E. Saperstein, D. Panasenko, and Y. Fainman, "Demonstration of a microwave spectrum analyzer based on time-domain optical processing in fiber," Opt. Lett. 29, 501-503 (2004). [CrossRef] [PubMed]
  14. R. E. Saperstein and Y. Fainman, "Information processing with longitudinal spectral decomposition of ultrafast pulses," Appl. Opt. doc. ID 82277 (posted 14 August 2007, in press)
  15. J. Azaña, N. K. Berger, B. Levit, V. Smulakovsky, and B. Fischer, "Frequency shifting of microwave signals by use of a general temporal self-imaging (Talbot) effect in optical fibers," Opt. Lett. 29, 2849-2851 (2004). [CrossRef]
  16. J. D. McKinney, I.-S. Lin, and A. M. Weiner, "Shaping the Power Spectrum of Ultra-Wideband Radio-Frequency Signals," IEEE Trans. Microwave Theory Tech. 54, 4247-4255 (2006). [CrossRef]
  17. J. Chou, Y. Han, and B. Jalali, "Adaptive RF-photonic arbitrary waveform generator," IEEE Photon. Technol. Lett. 15, 581-583 (2003). [CrossRef]
  18. B. H. Kolner, "Space-time duality and the theory of temporal imaging," J. Quantum Electron 30, 1951-1963 (1994). [CrossRef]
  19. X. Wang and N. Wada, "Spectral phase encoding of ultra-short optical pulse in time domain for OCDMA application," Opt. Express 15, 7319-7326 (2007). [CrossRef] [PubMed]
  20. J. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. Willner, and A. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005). [CrossRef] [PubMed]
  21. J. Ren, N. Alic, E. Myslivets, R. E. Saperstein, C. J. McKinstrie, R. M. Jopson, A. H. Gnauck, P. A. Andrekson and S. Radic, "12.47ns Continuously-Tunable Two-Pump Parametric Delay," European Conference on Optical Communication 2006 Postdeadline Th4.4.3. (2006).
  22. C. V. Bennett and B. H. Kolner, "Aberrations in Temporal Imaging," IEEE J. Quant. Electron. 37, 20-32 (2001). [CrossRef]
  23. J. R. Birge, R. Ell and F. X. Kärtner, "Two-dimensional spectral shearing interferometry for few-cycle pulse characterization," Opt. Lett. 31, 2063-2065 (2006). [CrossRef] [PubMed]
  24. Y. C. Tong, L. Y. Chan, and H. K. Tsang, "Fibre dispersion or pulse spectrum measurement using a sampling oscilloscope," Electron. Lett. 33, 983-985 (1997). [CrossRef]
  25. M. A. Muriel, J. Azaña, and A. Carballar, "Real-time Fourier transformer based on fiber gratings," Opt. Lett. 24,1-3 (1999). [CrossRef]
  26. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]
  27. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. -P. Chan, M. Itoh, and T. Yatagai, "Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments," Opt. Express 13, 10652-10664 (2005). [CrossRef] [PubMed]
  28. M. Sumetsky, B. Eggleton, and C. de Sterke, "Theory of group delay ripple generated by chirped fiber gratings," Opt. Express 10, 332-340 (2002). [PubMed]
  29. S. Gee, S. Ozharar, F. Quinlan, and P. J. Delfyett, "Mode partition noise measurement of time stretched ultralow noise actively modelocked semiconductor based laser," Proceedings of the 2007 IEEE LEOS Annual Meeting Paper ThD3, (IEEE, Piscataway, NJ, 2007).
  30. C. Dorrer, N. Belabas, J-P Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fourier transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000). [CrossRef]
  31. A. W. Rihaczek, Principles of High-Resolution Radar (McGraw-Hill, Inc., 1969).
  32. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, "Motion artifacts in optical coherence tomography with frequency-domain ranging," Opt. Express 12, 2977-2998 (2004). [CrossRef] [PubMed]
  33. Y. C. Fung, Biomechanics: Circulation, 2 ed. (Springer-Verlag, 1997).
  34. T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography," Opt. Lett. 24, 1584-1586 (1999). [CrossRef]
  35. A. H. Bachmann, M. L. Villiger, C. Blatter, T. Lasser, and R. A. Leitgeb, "Resonant Doppler flow imaging and optical vivisection of retinal blood vessels," Opt. Express 15, 408-422 (2007). [CrossRef] [PubMed]
  36. S. H. Yun, G. Tearney, J. de Boer, and B. Bouma, "Pulsed-source and swept-source spectral-domain optical coherence tomography with reduced motion artifacts," Opt. Express 12, 5614-5624 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited