OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 15493–15499

Fluorescence ratio thermometry in a microfluidic dual-beam laser trap

Susanne Ebert, Kort Travis, Bryan Lincoln, and Jochen Guck  »View Author Affiliations

Optics Express, Vol. 15, Issue 23, pp. 15493-15499 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (362 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dual-beam laser trap is a versatile tool with many possible applications. In order to characterize its thermal properties in a microfluidic trap geometry we have developed a non-intrusive fluorescence ratio technique using the temperature sensitive dye Rhodamine B and the temperature independent reference dye Rhodamine 110. We measured temperature distribution profiles in the trap with submicron spatial resolution on a confocal laser-scanning microscope. The maximum heating in the center of the trap amounts to (13 ± 2) °C/W for a wavelength of λ = 1064 nm and scales linearly with the applied power. The measurements correspond well with simulated temperature distributions.

© 2007 Optical Society of America

OCIS Codes
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(120.6780) Instrumentation, measurement, and metrology : Temperature
(140.6810) Lasers and laser optics : Thermal effects
(140.7010) Lasers and laser optics : Laser trapping
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: January 24, 2007
Revised Manuscript: October 29, 2007
Manuscript Accepted: October 29, 2007
Published: November 7, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

Susanne Ebert, Kort Travis, Bryan Lincoln, and Jochen Guck, "Fluorescence ratio thermometry in a microfluidic dual-beam laser trap," Opt. Express 15, 15493-15499 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin and J. P. Gordon, "Cooling and Trapping of Atoms by Resonance Radiation Pressure," Opt. Lett. 4, 161-163 (1979). [CrossRef] [PubMed]
  2. A. Ashkin, "Applications of Laser-Radiation Pressure," Science 210, 1081-1088 (1980). [CrossRef] [PubMed]
  3. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, "Direct Observation of Kinesin Stepping by Optical Trapping Interferometry," Nature 365, 721-727 (1993). [CrossRef] [PubMed]
  4. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, "Single-molecule biomechanics with optical methods," Science 283, 1689-1695 (1999). [CrossRef] [PubMed]
  5. R. Dimova, B. Pouligny, and C. Dietrich, "Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: Optical dynamometry study," Biophys. J. 79, 340-356 (2000). [CrossRef] [PubMed]
  6. E. Helfer, S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. Chatenay, "Buckling of actin-coated membranes under application of a local force," Phys. Rev. Lett. 87, 088103 (2001). [CrossRef] [PubMed]
  7. J. Sleep, D. Wilson, K. Parker, C. P. Winlove, R. Simmons, and W. Gratzer, "Elastic properties of the red blood cell membrane measured using optical tweezers: Relation to haemolytic disorders," Biophys. J. 76, A234-A234 (1999).
  8. J. Guck, R. Ananthakrishnan, H. Mahmood, T. J. Moon, C. C. Cunningham, and J. Käs, "The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells," Biophys. J. 81, 767-784 (2001). [CrossRef] [PubMed]
  9. W. Singer, M. Frick, T. Haller, S. Bernet, M. Ritsch-Marte, and P. Dietl, "Mechanical forces impeding exocytotic surfactant release revealed by optical tweezers," Biophys. J. 84, 1344-1351 (2003). [CrossRef] [PubMed]
  10. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence," Biophys. J. 88, 3689-3698 (2005). [CrossRef] [PubMed]
  11. A. Ashkin, "Acceleration and Trapping of Particles by Radiation Pressure," Phys. Rev. Lett. 24, 156-159 (1970). [CrossRef]
  12. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles," Opt. Lett. 11, 288-290 (1986). [CrossRef] [PubMed]
  13. K. Svoboda and S. M. Block, "Biological Applications of Optical Forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247-285 (1994). [CrossRef] [PubMed]
  14. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, "Demonstration of a Fiberoptic Light-Force Trap," Opt. Lett. 18, 1867-1869 (1993). [CrossRef] [PubMed]
  15. M. T. Wei, K. T. Yang, A. Karmenyan, and A. Chiou, "Three-dimensional optical force field on a Chinese hamster ovary cell in a fiber-optical dual-beam trap," Opt. Express 14, 3056-3064 (2006). [CrossRef] [PubMed]
  16. P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman microspectroscopy of single cells," Opt. Express 14, 5779-5791 (2006). [CrossRef] [PubMed]
  17. B. Lincoln, F. Wottawah, S. Schinkinger, S. Ebert, and J. Guck, " High throughput rheological measurements with an optical stretcher," in Cell Mechanics (Methods in Cell Biology83), Y. L. Wang, D. E. Discher eds. (Elsevier, New York, 2007). [CrossRef]
  18. F. U. Gast, P. S. Dittrich, P. Schwille, M. Weigel, M. Mertig, J. Opitz, U. Queitsch, S. Diez, B. Lincoln, F. Wottawah, S. Schinkinger, J. Guck, J. Käs, J. Smolinski, K. Salchert, C. Werner, C. Duschl, M. S. Jager, K. Uhlig, P. Geggier, and S. Howitz, "The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology," Microfluid.Nanofluid. 2, 21-36 (2006). [CrossRef]
  19. S. Cran-McGreehin, T. F. Krauss, and K. Dholakia, "Integrated monollithic optical manipulation," Lab Chip 6, 1122-1124 (2006). [CrossRef] [PubMed]
  20. H. Craighead, "Future lab-on-a-chip technologies for interrogating individual molecules," Nature 442, 387-393 (2006). [CrossRef] [PubMed]
  21. P. S. Dittrich and A. Manz, "Lab-on-a-chip: microfluidics in drug discovery," Nature Rev. Drug Discovery 5, 210-218 (2006). [CrossRef]
  22. T. L. Arbeloa, M. J. T. Estevez, F. L. Arbeloa, I. U. Aguirresacona, and I. L. Arbeloa, "Luminescence Properties of Rhodamines in Water-Ethanol Mixtures," J. Lumin. 48-9, 400-404 (1991). [CrossRef]
  23. D. Ross, M. Gaitan, and L. E. Locascio, "Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye," Anal. Chem. 73, 4117-4123 (2001). [CrossRef] [PubMed]
  24. J. Sakakibara and R. J. Adrian, "Whole field measurement of temperature in water using two-color laser induced fluorescence," Exp. Fluids 26, 7-15 (1999). [CrossRef]
  25. A. N. Tkhonov and A. A. Samarskii, Equations of Mathematical Physics (Dover, 1990).
  26. C. A. J. Fletcher, Computational Techniques for Fluid Dynamics 1 (Springer Verlag, 1991). [CrossRef]
  27. R. K. P. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. deMello, "Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging," Anal. Chem. 78, 2272-2278 (2006). [CrossRef] [PubMed]
  28. S. Duhr and D. Braun, "Thermophoretic depletion follows Boltzmann distribution," Phys. Rev. Lett. 96, 168301 (2006). [CrossRef] [PubMed]
  29. K. T. Yang, "Natural Convection in Enclosures", in Handbook of Single Phase Convective Heat Transfer, S. Kakac, R. K. Shah, and W. Aung, eds. (Wiley-Interscience, 1987),
  30. D. Braun and A. Libchaber, "Trapping of DNA by thermophoretic depletion and convection," Phys. Rev. Lett. 89, 188103 (2002). [CrossRef] [PubMed]
  31. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, "Laser-induced heating in optical traps," Biophys. J. 84, 1308-1316 (2003). [CrossRef] [PubMed]
  32. A. Schönle and S. W. Hell, "Heating by absorption in the focus of an objective lens," Opt. Lett. 23, 325-327 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited