OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 15507–15516

Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies

Ulas Sunar, Sosina Makonnen, Chao Zhou, Turgut Durduran, Guoqiang Yu, Hsing-Wen Wang, William M. F. Lee, and Arjun G. Yodh  »View Author Affiliations

Optics Express, Vol. 15, Issue 23, pp. 15507-15516 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (471 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diffuse optical methods were used to monitor two different therapies in K1735 malignant mouse melanoma tumor models: anti-vascular therapy and radiation therapy. Anti-vascular therapy induced acute variation in hemodynamic parameters within an hour, and radiation therapy induced longitudinal changes within 2 weeks. During anti-vascular therapy, the drug Combretastatin A-4 3-O-Phosphate (CA4P, 2.5 mg/200 μl PBS/mouse) significantly decreased tissue blood flow (65%) and blood oxygenation (38%) one hour after injection. In the longitudinal study, single-fraction ionizing radiation (12 Gy x 1) induced significant reduction of tissue blood flow (36%) and blood oxygenation (24%) 14 days after radiation. The results correlated well with contrast enhanced ultrasound, tumor histology, and a nitroimidazole hypoxia marker (EF5). The research provides further evidence that noninvasive diffuse optical spectroscopies can be useful tools for monitoring cancer therapy in vivo.

© 2007 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 6, 2007
Revised Manuscript: October 26, 2007
Manuscript Accepted: October 29, 2007
Published: November 8, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

Ulas Sunar, Sosina Makonnen, Chao Zhou, Turgut Durduran, Guoqiang Yu, Hsing-Wen Wang, William M. Lee, and Arjun G. Yodh, "Hemodynamic responses to antivascular therapy and ionizing radiation assessed by diffuse optical spectroscopies," Opt. Express 15, 15507-15516 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Vaupel, F. Kallinowski, and P. Okunieff. "Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review," Cancer Res. 49, 6449-6465 (1989). [PubMed]
  2. R. K. Jain. "Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy," Nat. Med. 7, 987-989 (2001). [CrossRef] [PubMed]
  3. R. K. Jain, L. L. Munn, and D. Fukumura. "Dissecting tumour pathophysiology using intravital microscopy," Nat. Rev. Cancer 2, 266-276 (2002). [CrossRef] [PubMed]
  4. D.M. Brizel, G.S. Sibley, L.R. Prosnitz, R.L. Scher, and M.W. Dewhirst. "Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck," Int. J. Radiat. Oncol. Biol. Phys. 38, 285-289 (1997). [CrossRef] [PubMed]
  5. M. Nordsmark, S.M. Bentzen, and J. Overgaard. "Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head & neck," Radiother. Oncol. 41, 31-39 (1996). [PubMed]
  6. L.H. Gray, A.D. Conger, M. Ebert, S. Horsney, and O.C.A. Scott. "The concentration of oxygen dissolved in tissue at the time of irradiation as a factor in radiotherapy," Br. J. Radiol. 26, 638-42 (1953). [CrossRef] [PubMed]
  7. R.F. Kallman. "The phenomenon of reoxygenation and its implications for fractionated radiotherapy," Radiol. 105, 135-142 (1972).Q1
  8. A. F. DeVries, C. Kremser, P. A. Hein, J. Griebel, A. Krezcy, D. Ofner, K. P. Pfeiffer, P. Lukas, and W. Judmaier. "Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma," Int. J. Radiat. Oncol. Biol. Phys. 56, 958-965 (2003). [CrossRef] [PubMed]
  9. N. A. Mayr, W. T. Yuh, V. A. Magnotta, J. C. Ehrhardt, J. A. Wheeler, J. I. Sorosky, C. S. Davis, B. C. Wen, D. D. Martin, R. E. Pelsang, R. E. Buller, L.W. Oberley, D. E. Mellenberg, and D. H. Hussey. "Tumor perfusion studies using fast magnetic resonance imaging technique in advanced cervical cancer: a new noninvasive predictive assay," Int. J. Radiat. Oncol. Biol. Phys. 36, 623-633 (1996). [CrossRef] [PubMed]
  10. D.W. Siemann, K.H. Warrington, and M.R. Horsman. "Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis," Radiother. Oncol. 57, 5-12 (2000). [CrossRef] [PubMed]
  11. R. Murata, D.W. Siemann, J. Overgaard, and M. R. Horsman. "Improved tumor response by combining radiation and the vascular-damaging drug 5,6-dimethylxanthenone-4-acetic acid," Radiat. Res. 156, 503-509 (2001). [CrossRef] [PubMed]
  12. R. Murata, D.W. Siemann, J. Overgaard, and M. R. Horsman. "Interaction between combretastatin A-4 disodium phosphate and radiation in murine tumors," Radiother. Oncol. 60, 155-161 (2001). [CrossRef] [PubMed]
  13. A. G. Yodh and D. A. Boas, Biomedical Photonics (CRC Press, 2003). Chapter Functional Imaging with Diffusing Light.
  14. C. Cheung, J. P. Culver, K. Takahashi, J. H. Greenberg, and A. G. Yodh. "In vivo cerebrovascular measurement combining diffuse near-infrared absorption and correlation spectroscopies," Phys. Med. Biol. 46, 2053-2065 (2001). [CrossRef] [PubMed]
  15. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh. "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Metab. 23, 911-924 (2003). [CrossRef] [PubMed]
  16. C. Zhou, G. Yu, F. Daisuke, J. H. Greenberg, A. G. Yodh, and T. Durduran. "Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain," Opt. Express 14, 1125-1144 (2006). [CrossRef] [PubMed]
  17. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh. "Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation," Opt. Lett. 29, 1766-1768 (2004). [CrossRef] [PubMed]
  18. J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler. "Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy," J. Biomed. Opt. 10, 44002 (2005). [CrossRef] [PubMed]
  19. G. Yu, T. Durduran, G. Lech, C. Zhou, B. Chance, E. R. MohlerIII, and A. G. Yodh. "Time-dependent blood flow and oxygenation in human skeletal muscle measured by noninvasive near-infrared diffuse optical spectroscopies," J. Biomed. Opt. 10, 024027 (2005). [CrossRef] [PubMed]
  20. U. Sunar, H. Quon, T. Durduran, J. Zhang, J. Du, C. Zhou, G. Yu, R. Choe, A. Kilger, R. Lustig, L. Loevner, S. Nioka, B. Chance, and A.G. Yodh. "Noninvasive diffuse optical measurement of blood flow and blood oxygenation for monitoring radiation therapy in patients with head and neck tumors," J. Biomed. Opt. 11, 064021 (2006). [CrossRef]
  21. T. Durduran, R. Choe, G. Yu, C. Zhou, J. C. Tchou, B. J. Czerniecki, and A. G. Yodh. "Diffuse optical measurement of blood flow in breast tumors," Opt. Lett. 30, 2915-2917 (2005). [CrossRef] [PubMed]
  22. C. Zhou, R. Choe, N. Shah, T. Durduran, G. Q. Yu, A. Durkin, A. Cerussi, D. Hsiang, R. Mehta, B. J. Tromberg, and A. G. Yodh. "Diffuse optical monitoring of blood flow and oxygenation in human breast cancer during early stages of neoadjuvant chemotherapy," J. Biomed. Opt. 12, 051903 (2007). [CrossRef] [PubMed]
  23. G. Yu, T. Durduran, H. W. Wang, C. Zhou, H. M. Saunders, C. M. Sehgal, T. M. Busch, and A. G. Yodh. "Noninvasive monitoring of hemodynamic responses in RIF tumors during and after PDT," Clin. Cancer Res. 11, 3543-3552 (2005). [CrossRef] [PubMed]
  24. Turgut Durduran, "Noninvasive measurements of tissue hemodynamics with hybrid diffuse optical methods," Ph.D. Thesis, University of Pennsylvania (2004).
  25. G. Yu, T. F. Floyd, T. Durduran, C. Zhou, J. J. Wang, J. A. Detre, and A. G. Yodh. "Validation of diffuse correlation spectroscopy for muscle blood flow with concurrent arterial spin labeled perfusion MRI," Opt. Express 15, 1064-1075 (2007). [CrossRef] [PubMed]
  26. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. Rosen, and A. G. Yodh. "Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: A case study with comparison to MRI," Med. Phys. 32, 1-11 (2005). [CrossRef]
  27. Q. Zhu, S. H. Kurtzmany, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos. "Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers," Neoplasia 7, 263-270 (2005). [CrossRef] [PubMed]
  28. D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg. "Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: A case study," J. Biomed. Opt. 9, 230-238 (2004). [CrossRef] [PubMed]
  29. L. S. Ziemer, W. M. F. Lee, S. A. Vinogradov, C. Sehgal, and D. F. Wilson. "Oxygen distribution in murine tumors: characterization using oxygen-dependent quenching of phosphorence," J. Appl. Physiol. 98, 1503-1510 (2005). [CrossRef]
  30. C. M. Sehgal, P. H. Arger, S. E. Rowling, E. F. Conant, C. Reynolds, and J. A. Patton. "Quantitative vascularity of breast masses by Doppler imaging: Regional variations and diagnostic implications," J. Ultrasound Med. 19, 427-440 (2000). [PubMed]
  31. S. M. Evans, S. Hahn, D. R. Pook, W. T. Jenkins, A. A Chalian, P. Zhang, C. Stevens, R. Weber, G. Weinstein, I. Benjamin, N. Mirza, M. Morgan, S. Rubin,W. G. McKenna, E. M. Lord, and C. J. Koch. "Detection of hypoxia in human squamous cell carcinoma by EF5 binding," Cancer Res. 60, 2018-2024 (2000). [PubMed]
  32. G. Maret and P. E. Wolf. "Multiple light scattering from disordered media. the effect of brownian motion of scatterers," Z. Phys. B 65, 409-413 (1987). [CrossRef]
  33. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer. "Diffusing wave spectroscopy," Phys. Rev. Lett. 60, 1134-1137 (1988). [CrossRef] [PubMed]
  34. D. A. Boas, L. E. Campbell, and A. G. Yodh. "Scattering and imaging with diffusing temporal field correlations," Phys. Rev. Lett. 75, 1855-58 (1995). [CrossRef] [PubMed]
  35. M. Heckmeier, S. E. Skipetrov, G. Maret, and R. Maynard. "Imaging of dynamic heterogeneities in multiplescattering media," J. Opt. Soc. Am. A 14, 185-191 (1997). [CrossRef]
  36. Chao Zhou, "In vivo optical imaging and spectroscopy of cerebral hemodynamics," Ph.D. Thesis, University of Pennsylvania (2007).
  37. B. J. Berne and R. Pecora. "Dynamic Light Scattering," (1976) (New York,Wiley).
  38. D. A. Boas and A. G. Yodh. "Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation," J. Opt. Soc. Am. A 14, 192-215 (1997). [CrossRef]
  39. B. C. Wilson, T. J. Farrell, and M. S. Patterson. "An optical fiber-based diffuse reflectance spectrometer for non-invasive investigation of photodynamic sensitizers in vivo," Proc. SPIE 6, 219-232 (1990).
  40. H. W. Wang, M. E. Putt, M. J. Emanuele, D. B. Shin, E. Glatstein, A. G. Yodh, and T. M. Busch. "Treatmentinduced changes in tumor oxygenation predict photodynamic therapy outcome," Cancer Res. 64, 7553-7561 (2004). [CrossRef] [PubMed]
  41. H.W. Wang, T. C. Zhu, M. E. Putt, M. Solonenko, J. Metz, A. Dimofte, J. Miles, D. L. Fraker, E. Glatstein, S. M. Hahn, and A. G. Yodh. "Broadband reflectance measurement of light penetration, blood oxygenation, hemoglobin concentration, and drug concentration in human intraperitoneal tissues before and after photodynamic therapy," J. Biomed. Opt. 10, 014004 (2005). [CrossRef]
  42. S. Prahl. "Optical properties spectra (webpage http://omlc.ogi.edu/spectra/index.html)," (2001).
  43. J.H. Tsai, S. Makonnen, M. Feldman, C.M. Sehgal, A. Maity, and W.M. Lee. "Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis," Cancer Biol. Ther. 4, 1395-1400 (2005). [CrossRef] [PubMed]
  44. M. Kragh, B. Quistorff, M. R. Horsman, and P. E. G. Kristjansen. "Acute effects of vascular modifying agents in solid tumors assessed by noninvasive laser Doppler flowmetry and near infrared spectroscopy," Neoplasia 4, 263-267 (2002). [CrossRef] [PubMed]
  45. D. A. Beauregard, P. E. Thelwall, D. J. Chaplin, S. A. Hill, G. E. Adams, and K. M. Brindle. "Magnetic resonance imaging and spectroscopy of combretastatin A4 prodrug-induced disruption of tumour perfusion and energetic status," Br. J. Cancer 77, 1761-1767 (1998). [CrossRef] [PubMed]
  46. D. E. Goertz, J. L. Yu, R. S. Kerbel, P. N. Burns, and F. S. Foster. "High-frequency Doppler ultrasound monitors the effects of antivascular therapy on tumor blood flow," Cancer Res. 62, 6371-6375 (2002). [PubMed]
  47. S. M. Galbraith, R. J. Maxwell, M. A. Lodge, G. M. Tozer, J. Wilson, N. J. Taylor, J. J. Stirling, L. Sena, A. R. Padhani, and G. J. S. Rustin. "Combretastatin A4 phosphate has tumor antivascular activity in rat and man as demonstrated by dynamic magnetic resonance imaging," J. Clin. Oncol. 21, 2831-2842 (2003). [CrossRef] [PubMed]
  48. G. M. Tozer. "Measuring tumour vascular response to antivascular and antiangiogenic drugs," Br. J. Radiol. 76, 23-35 (2003). [CrossRef]
  49. H. L. Anderson, J. T. Yap, M. P. Miller, A. Robbins, T. Jones and P. M. Price. "Assessment of pharmacodynamic vascular response in a phase I trial of Combretastatin A4 Phosphate," J. Clin. Oncol. 21, 2823-2830 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited