OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 15523–15530

Versatile opto-fluidic ring resonator lasers with ultra-low threshold

Scott Lacey, Ian M. White, Yuze Sun, Siyka I. Shopova, Jay M. Cupps, Po Zhang, and Xudong Fan  »View Author Affiliations


Optics Express, Vol. 15, Issue 23, pp. 15523-15530 (2007)
http://dx.doi.org/10.1364/OE.15.015523


View Full Text Article

Enhanced HTML    Acrobat PDF (3072 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a versatile integrated opto-fluidic ring resonator (OFRR) dye laser that can be operated regardless of the refractive index (RI) of the liquid. The OFRR is a micro-sized glass capillary with a wall thickness of a few micrometers. When the liquid in the core has an RI lower than that of the capillary wall (n=1.45), the capillary circular cross-section forms the ring resonator and supports the whispering gallery modes (WGMs) that interact evanescently with the gain medium in the core. When the core RI is higher than that of the wall, the WGMs exist at the core/wall interface. In both cases, the WGMs can have extremely high Q-factor (>109), providing excellent optical feedback for low-threshold lasing. In this paper, we analyze the OFRR laser for various core RI’s and then we demonstrate the R6G laser when the dye is in ethanol (n=1.36), chloroform (n=1.445), and quinoline (n=1.626). The lasing threshold of 25 nJ/mm2 is achieved, two to three orders of magnitude lower than the previous work in microfluidic lasers. We further show that the laser emission can be efficiently out-coupled via an optical waveguide in touch with the OFRR for both high and low RI liquid core, allowing for easy guiding and delivery of the laser light.

© 2007 Optical Society of America

OCIS Codes
(140.2050) Lasers and laser optics : Dye lasers
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: October 11, 2007
Revised Manuscript: November 2, 2007
Manuscript Accepted: November 3, 2007
Published: November 8, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Scott Lacey, Ian M. White, Yuze Sun, Siyka I. Shopova, Jay M. Cupps, Po Zhang, and Xudong Fan, "Versatile opto-fluidic ring resonator lasers with ultra-low threshold," Opt. Express 15, 15523-15530 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15523


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Helbo, A. Kristensen, and A. Menon, "A micro-cavity fluidic dye laser," J. Micromech. Microeng. 13, 307-311 (2003). [CrossRef]
  2. S. Balslev and A. Kristensen, "Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments," Opt. Express 13, 344-351 (2005). [CrossRef] [PubMed]
  3. J. C. Galas, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator," Appl. Phys. Lett. 86, 264101 (2005). [CrossRef]
  4. D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser," J. Am. Chem. Soc. 127, 8952-8953 (2005). [CrossRef] [PubMed]
  5. Z. Li, Z. Zhang, T. Emery, A. Scherer, and D. Psaltis, "Single mode optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006). [CrossRef] [PubMed]
  6. Q. Kou, I. Yesilyurt, and Y. Chen, "Collinear dual-color laser emission from a microfluidic dye laser," Appl. Phys. Lett. 88, 091101, 2006. [CrossRef]
  7. M. Gersborg-Hansen and A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers," Opt. Express 15, 137-142 (2007). [CrossRef] [PubMed]
  8. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006). [CrossRef] [PubMed]
  9. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photon. 1, 106-114 (2007). [CrossRef]
  10. H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, "Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances," Opt. Lett. 9, 499-501 (1984). [CrossRef] [PubMed]
  11. J. C. Knight, H. S. T. Driver, R. J. Hutcheon, and G. N. Robertson, "Core-resonance capillary-fiber whispering-gallery-mode laser," Opt. Lett. 17, 1280-1282 (1992). [CrossRef] [PubMed]
  12. H.-J. Moon, Y.-T. Chough, and K. An, "Cylindrical Microcavity Laser Based on the Evanescent-Wave-Coupled Gain," Phys. Rev. Lett. 85, 3161-3164 (2000). [CrossRef] [PubMed]
  13. X. Jiang, Q. Song, L. Xu, J. Fu, and L. Tong, "Microfiber knot dye laser based on the evanescent-wave-coupled gain," Appl. Phys. Lett. 90, 233501 (2007). [CrossRef]
  14. H.-J. Moon, G.-W. Park, S.-B. Lee, K. An, and J.-H. Lee, "Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator," Appl. Phys. Lett. 84, 4547-4549 (2004). [CrossRef]
  15. R. K. Chang and A. J. Campillo, Optical Processes in Microcavities (World Scientific, Singapore, 1996). [CrossRef]
  16. S. I. Shopova, H. Zhu, X. Fan, and P. Zhang, "Optofluidic ring resonator based dye laser," Appl. Phys. Lett. 90, 221101 (2007). [CrossRef]
  17. S. I. Shopova, J. M. Cupps, P. Zhang, E. P. Henderson, S. Lacey, and X. Fan, "Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer," Opt. Express 15, 12735-12742 (2007). [CrossRef] [PubMed]
  18. I. M. White, J. Gohring, G. Yang, S. Lacey, and X. Fan, "Versatile waveguide-coupled opto-fluidic devices based on liquid core optical ring resonators," under review.
  19. I. Teraoka and S. Arnold, "Coupled whispering gallery modes in a multilayer-coated microsphere," Opt. Lett. 32, 1147-1149 (2007). [CrossRef] [PubMed]
  20. J. C. Knight, H. S. T. Driver, and G. N. Robertson, "Interference modulation of Q values in a cladded-fiber whispering-gallery-mode laser," Opt. Lett. 18, 1296 -1298 (1993). [CrossRef] [PubMed]
  21. H.-J. Moon, Y.-T. Chough, J. B. Kim, K. An, J. Yi, and J. Lee, "Cavity-Q-driven spectral shift in a cylindrical whispering-gallery-mode microcavity laser," Appl. Phys. Lett. 76, 3679-3681 (2000). [CrossRef]
  22. I. M. White, H. Oveys, and X. Fan, "Liquid Core Optical Ring Resonator Sensors," Opt. Lett. 31, 1319-1321 (2006). [CrossRef] [PubMed]
  23. J. Stone, "Measurements of the Absorption of Light in Low-Loss Liquids," J. Opt. Soc. Am. 62, 327-333 (1972). [CrossRef]
  24. H. Cabrera, A. Marcano, and Y. Castellanos, "Absorption coefficient of nearly transparent liquids measured using thermal lens spectrometry," Condens. Matter Phys. 9, 385-389 (2006).
  25. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, "Ultimate Q of optical microsphere resonators," Opt. Lett. 21, 453-455 (1996). [CrossRef] [PubMed]
  26. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, "High-Q measurements of fused-silica microspheres in the near infrared," Opt. Lett. 23, 247-249 (1998). [CrossRef]
  27. S.-B. Lee, M.-K. Oh, J.-H. Lee, and K. An, "Single radial-mode lasing in a submicron-thickness spherical shell microlaser," Appl. Phys. Lett. 90, 201102 (2007). [CrossRef]
  28. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, "Optical liquid ring resonator sensor," Opt. Express 15, 14376-14381 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited