OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 15531–15538

Near-field studies of microwave three-dimensional photonic crystals with waveguides

Rong-Juan Liu, Zhi-Yuan Li, Fei Zhou, and Dao-Zhong Zhang  »View Author Affiliations


Optics Express, Vol. 15, Issue 23, pp. 15531-15538 (2007)
http://dx.doi.org/10.1364/OE.15.015531


View Full Text Article

Enhanced HTML    Acrobat PDF (4513 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By utilizing a vector network analyzer, the field distributions on the surface of a three-dimensional woodpile photonic crystal with a straight waveguide or a bend waveguide buried under the surface were measured in the microwave regime. The information of field profile and propagation characteristics of the guided modes can be successfully extracted from the surface near-field measurement. This work indicates that the near-field detection can become a promising means for experimental characterization of three-dimensional photonic crystal devices in supplement to the usual transmission spectrum measurement.

© 2007 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(350.4010) Other areas of optics : Microwaves
(210.4245) Optical data storage : Near-field optical recording
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: August 10, 2007
Revised Manuscript: November 6, 2007
Manuscript Accepted: November 6, 2007
Published: November 8, 2007

Citation
Rong-Juan Liu, Zhi-Yuan Li, Fei Zhou, and Dao-Zhong Zhang, "Near-field studies of microwave three-dimensional photonic crystals with waveguides," Opt. Express 15, 15531-15538 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15531


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Vileneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  2. A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58, 4809-4817 (1998). [CrossRef]
  3. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Jouannopoulos, "Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 μm wavelengths," Opt. Lett. 26, 286-288 (2001). [CrossRef]
  4. E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Polarization-independent linear waveguides in 3D photonic crystals," Phys. Rev. Lett. 91, 023902 (2003). [CrossRef] [PubMed]
  5. M. Galli, D. Bajoni, M. Patrini, G. Guizzetti, D. Gerace, and L. C. Andreani, M. Belotti, "Single-mode versus multimode behavior in silicon photonic crystal waveguides measured by attenuated total reflectance," Phys. Rev. B. 72, 125322 (2005). [CrossRef]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser, " Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  7. R. K. Lee, O. J. Painter, B. D’Urso, A. Scherer, and A. Yariv, "Measurement of spontaneous emission from a two-dimensional photonic band gap defined microcavity at near-infrared wavelengths, "Appl. Phys. Lett. 74, 1522-1524 (1999). [CrossRef]
  8. P. Pottier, C. Seassal, X. Letartre, J. L. Leclercq, P. Viktorovitch, D. Cassagne, and C. Jouanin, "Triangular and hexagonal high Q-factor 2-D photonic bandgap cavities on III-V suspended membranes," J. Lightwave Technol. 17, 2058-2062 (1999). [CrossRef]
  9. J. Hwang, H. Ryu, D. Song, I. Han, H. Song, H. Park, Y. Lee, and D. Jang, "Room-temperature triangular-lattice two-dimensional photonic band gap lasers operating at 1.54 µm, " Appl. Phys. Lett. 76, 2982 -2984 (2000). [CrossRef]
  10. F. de Fornel, Evanescent Waves (Springer-Verlag,Berlin, 2001).
  11. E. B. McDaniel, J. W. P. Hsu, L. S. Goldner, E. L. Shirley and G. W. Bryant, "Local characterization of transmission properties of a two-dimensional photonic crystal," Phy. Rev. B 55, 10878 -10882 (1997). [CrossRef]
  12. S. Fan, I. Appelbaum, and J. D. Joannopoulos, "Near-field scanning optical microscopy as a simultaneous probe of fields and band structure of photonic crystals: A computational study," Appl. Phys. Lett. 75, 3461-3463 (1999). [CrossRef]
  13. P. L. Phillips, J. C. Knight, B. J. Mangan, and P. St. J. Russell, "Near-field optical microscopy of thin photonic crystal films," J. Appl. Phys. 85, 6337-6342 (1999). [CrossRef]
  14. A. L. Campillo, J. W. P. Hsu, C. A. White and A. Rosenberg, "Mapping the optical intensity distribution in photonic crystals using a near-field scanning optical microscope, " J. Appl. Phys. 89, 2801-2807 (2001). [CrossRef]
  15. D. Gérard, L. Berguiga, F. de Fornel, L. Salomon, C. Seassal, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, "Near-field probing of active photonic-crystal structures, "Opt. Lett. 27, 173-175 (2002). [CrossRef]
  16. V. S. Volkov, S. I. Bozhevolnyi, P. I. Borel, L. H. Frandsen, and M. Kristensen, "Near-field characterization of photonic crystal Y-splitters, " Phys. Stat. Sol. (c)  2, 4087-4092 (2005). [CrossRef]
  17. N. Louvion, D. Ge’rard, J. Mouette, F. de Fornel, C. Seassal, X. Letartre, A. Rahmani, and S. Callard, "Local observation and spectroscopy of optical Modes in an active photonic-crystal microcavity, " Phys. Rev. Lett. 94, 113907 (2005). [CrossRef] [PubMed]
  18. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Direct observation of bloch harmonics and negative phase velocity in photonic crystal waveguides, " Phys. Rev. Lett. 94, 123901 (2005). [CrossRef] [PubMed]
  19. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides, " Phys. Rev. Lett. 94, 073903 (2005). [CrossRef] [PubMed]
  20. M. Abashin, P. Tortora, I. Märki, U. Levy, W. Nakagawa, L. Vaccaro, H. P. Herzig and Y. Fainman, "Near-field characterization of propagating optical modes in photonic crystal waveguides, "Opt. Express 14, 1643-1657 (2006). [CrossRef]
  21. N. Louvion, A. Rahmani, C. Seassal, S. Callard, D. Gérard and F. Fornel, "Near-field observation of subwavelength confinement of photoluminescence by a photonic crystal microcavity, " Opt. Lett. 31, 2160-2162 (2006) [CrossRef] [PubMed]
  22. H. H. Tao, R. J. Liu, Z. Y. Li, S Feng, Y. Z. Liu, C. Ren, B. Y. Cheng, D. Z. Zhang, H. Q. Ma, L. A. Wu, and Z. B. Zhang, "Mapping of complex optical field patterns in multimode photonic crystal waveguides by near-field scanning optical microscopy, " Phys. Rev. B 74, 205111 (2006) [CrossRef]
  23. Z. Lu, S. Shi, C. A. Schuetz, J. A. Murakowski, and D. W. Prather, "Three-dimensional photonic crystal flat lens by full 3D negative refraction, "Opt. Express 13, 5592-5599 (2005) [CrossRef]
  24. Z. Lu, S. Shi, C. A. Schuetz, and D. W. Prather, "Experimental demonstration of negative refraction imaging in both amplitude and phase, "Opt. Exp. 13, 2007-2012 (2005) [CrossRef]
  25. Z. Lu, J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett. 95, 153901 (2005) [CrossRef] [PubMed]
  26. Z. Lu, S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, "Experimental demonstration of self-collimation inside a three-dimensional photonic crystal, " Phys. Rev. Lett. 96, 173902 (2006) [CrossRef] [PubMed]
  27. A. Chutinan and S. Noda "Highly confined waveguides and waveguide bends in three-dimensional photonic crystal," Appl. Phys. Lett. 75, 3739-3741 (1999) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited