OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 15555–15565

Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers

Long Jin, Zhi Wang, Qiang Fang, Yange Liu, Bo Liu, Guiyun Kai, and Xiaoyi Dong  »View Author Affiliations

Optics Express, Vol. 15, Issue 23, pp. 15555-15565 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (484 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we investigate the spectral characteristics and bend response of fiber Bragg gratings (FBGs) in all-solid photonic bandgap fibers (PBGFs). We inscribe FBGs within the secondary bandgap by ultraviolet (UV) side illumination and observe the couplings to backward core mode, guided LP01 and LP11 supermodes and radiative LP02 supermodes. The mechanisms of these resonant couplings in the FBG are described in detail. We demonstrate that only those supermodes with certain phase relationships and symmetric mode field profiles are responsible for the supermode resonances. When the fiber grating is bent, the guided supermode resonances become chirped as a result of the strain gradient over the fiber cross section. Meanwhile, the core resonance is enhanced, due to more energy of the core mode distributed in the cladding rods. The bend response is direction dependant owing to the nonuniform UV-induced average index raises and index modulation over the high-index rod lattice.

© 2007 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(060.2310) Fiber optics and optical communications : Fiber optics
(230.3990) Optical devices : Micro-optical devices
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Photonic Crystal Fibers

Original Manuscript: September 4, 2007
Revised Manuscript: October 27, 2007
Manuscript Accepted: October 30, 2007
Published: November 9, 2007

Long Jin, Zhi Wang, Qiang Fang, Yange Liu, Bo Liu, Guiyun Kai, and Xiaoyi Dong, "Spectral characteristics and bend response of Bragg gratings inscribed in all-solid bandgap fibers," Opt. Express 15, 15555-15565 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Erdogan, "Fiber grating spectra," J. Lightwave Technol. 15, 1277-1294 (1997). [CrossRef]
  2. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003). [CrossRef] [PubMed]
  3. P. St. J. Russell, "Photonic-Crystal Fibers," J. Lightwave Technol. 24, 4729-4749 (2006). [CrossRef]
  4. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001). [CrossRef] [PubMed]
  5. N. Groothoff, J. Canning, E. Buckley, K. Lyttikainen, and J. Zagari, "Bragg gratings in air-silica structured fibers," Opt. Lett. 28, 233-235 (2003). [CrossRef] [PubMed]
  6. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in Optical Fiber Communications Conference, Postconference Edition, Vol. 70 of OSA Trends in Optics and Photonics Series Technical Digest (Optical Society of America, Washington D.C. 2002) pp. 4f66-468.
  7. T. T. Larsen, A. Bjarklev, and D. S. Hermann, "Optical devices based on liquid crystal photonics bandgap fibers," Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  8. T. P. White, R. C. McPhedran, C. M. de Sterke, N. M. Litchinitser, and B. J. Eggleton, "Resonance and scattering in microstructured optical fibers," Opt. Lett. 27, 1977-1979 (2002). [CrossRef]
  9. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003). [CrossRef] [PubMed]
  10. P. Steinvurzel, B. T. Kuhmley, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton, "Long- wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12, 5424-5433 (2004). [CrossRef] [PubMed]
  11. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. St. J. Russell, "Guidance properties of low-contrast photonic bandgap fibres," Opt. Express 13, 2503-2511 (2005). [CrossRef] [PubMed]
  12. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, "Bend loss in all-solid bandgap fibres," Opt. Express 14, 5688-5698 (2006). [CrossRef] [PubMed]
  13. P. Steinvurzel, E. D. Moore, E. C. Magi, B. T. Kuhlmey and B. J. Eggleton, "Long period grating resonances in photonic bandgap fiber," Opt. Express 14, 3007-3014 (2006). [CrossRef] [PubMed]
  14. P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006). [CrossRef] [PubMed]
  15. D. Noordegraaf, L. Scolari, J. Lægsgaard, L. Rindorf, and T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers," Opt. Express 15, 7901-7912 (2007). [CrossRef] [PubMed]
  16. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, "All-solid photonic bandgap fiber," Opt. Lett. 29, 2369-2371 (2004). [CrossRef] [PubMed]
  17. J. C. Knight, F. Luan, G. J. Pearce, A. Wang, T. A. Birks, and D. M. Bird, "Solid Photonic Bandgap Fibres and Applications," Jpn. J. Appl. Phys. 45, 6059-6063 (2006). [CrossRef]
  18. G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, "Low-loss all-solid photonic bandgap fiber," Opt. Lett. 32, 1203-1205 (2007).
  19. Z. Wang, T. Taru, T. A. Birks, J. C. Knight, Y. Liu, and J. Du, "Coupling in dual-core photonic bandgap fibers: theory and experiment," Opt. Express 15, 4795-4803 (2007). [CrossRef] [PubMed]
  20. Z. Wang, Y. Liu, G. Kai, J. Liu, Y. Li, T. Sun, L. Jin, Y. Yue, W. Zhang, S. Yuan, and X. Dong, "Directional couplers operated by resonant coupling in all-solid photonic bandgap fibers," Opt. Express 15, 8925-8930 (2007). [CrossRef] [PubMed]
  21. Q. Fang, Z. Wang, G. Kai, L. Jin, Y. Yue, J. Du, Q. Shi, Z. Liu, B. Liu, Y. Liu, S. Yuan, and X. Dong, "Proposal for All-Solid Photonic Bandgap Fiber with Improved Dispersion Characteristics," IEEE Photon. Technol. Lett. 19, 1239-1241 (2007). [CrossRef]
  22. L. Jin, Z. Wang, Q. Fang, B. Liu, Y. Liu, G. Kai, X. Dong, and B. O. Guan, "Bragg grating resonances in all-solid bandgap fibers," Opt. Lett. 32, 2717-2719 (2007). [CrossRef] [PubMed]
  23. U. Röpke, H. Bartelt, S. Unger, K. Schuster, and J. Kobelke, "Two-dimensional high-precision fiber waveguide arrays for coherent light propagation," Opt. Express 15, 6894-6899 (2007). [CrossRef]
  24. J. Canning, H. J. Deyerl, H. R. Sørensen, and M. Kristensenc, "Ultraviolet-induced birefringence in hydrogen-loaded optical fiber," J. Appl. Phys. 97, 053104 (2005). [CrossRef]
  25. J. Lægsgaard and T. T. Alkeskjold, "Designing a photonic bandgap fiber for thermo-optic switching," J. Opt. Soc. Am. B 23, 951-957 (2006). [CrossRef]
  26. T. B. Iredale, P. Steinvurzel, B. J. Eggleton, "Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre," Electron. Lett. 42, 739-740 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited