OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 15576–15582

A novel Zn-indiffused mode converter in x-cut lithium niobate

Ruey-Ching Twu, Hsuan-Hsien Lee, Hao-Yang Hong, and Chin-Yau Yang  »View Author Affiliations


Optics Express, Vol. 15, Issue 23, pp. 15576-15582 (2007)
http://dx.doi.org/10.1364/OE.15.015576


View Full Text Article

Enhanced HTML    Acrobat PDF (842 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel Zn-indiffused mode converter has been proposed and experimentally studied in an x-cut/z-propagation lithium niobate at a wavelength of 0.632 μm for the first time. The optimized phase-matching and mode-conversion voltages for maximum conversion are 12 V and -5 V, respectively. The results show that the proposed mode converter can operate with a stable conversion efficiency of about 99.5% between TM and TE polarizations at a throughput power of 25 μW in a period of 60 min. Moreover, a comparison of optical power-handling stability between the Ti-indiffused and the Zn-indiffused channel waveguides, was explored. The encouraging results indicate that the Zn-indiffused waveguide has better power stability than the Ti-indiffused waveguide. Thus, it is expected that the proposed mode converter will have better stability than the conventional Ti-indiffused ones, especially in the visible wavelength region.

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.3730) Materials : Lithium niobate
(230.2090) Optical devices : Electro-optical devices

ToC Category:
Integrated Optics

History
Original Manuscript: September 10, 2007
Revised Manuscript: November 6, 2007
Manuscript Accepted: November 7, 2007
Published: November 9, 2007

Citation
Ruey-Ching Twu, Hsuan-Hsien Lee, Hao-Yang Hong, and Chin-Yau Yang, "A novel Zn-indiffused mode converter in x-cut lithium niobate," Opt. Express 15, 15576-15582 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15576


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Li, X. Cui, I. Yamaguchi, M. Yokota, and T. Yoshino, "Optical voltage sensor using a pulse-controlled electrooptic quarter waveplate," IEEE Trans. Instrum. Meas. 54, 273-277 (2005). [CrossRef]
  2. R. C. Alferness, "Electrooptic guided-wave device for general polarization transformations," IEEE J. Quantum Electron. 17, 965-969 (1981). [CrossRef]
  3. S. Thaniyavarn, "Wavelength independent, optical damage immune z-propagation LiNbO3 waveguide polarization converter," Appl. Phys. Lett. 47, 674-677 (1985). [CrossRef]
  4. T. Kawazoe, K. Satoh, I. Hayashi, and H. Mori, "Fabrication of integrated-optic polarization controller using z-propagating Ti-LiNbO3 waveguides," J. Lightwave Technol. 10, 51-56 (1992). [CrossRef]
  5. R. C. Alferness and L. L. Buhl, "Tunable electro-optic waveguide TE-TM converter/wavelength filter," Appl. Phys. Lett. 40, 861-862 (1982). [CrossRef]
  6. N. A. Sanford, J. M. Connors, and W. A. Dyes, "Simplified z-propagating DC bias stable TE-TM mode converter fabricated in y-cut lithium niobate," J. Lightwave Technol. 6, 898-901 (1988). [CrossRef]
  7. T. J. Wang, W. S. Lin, and F. K. Liu, "Integrated-optic biosensor by electro-optically modulated surface plasmon resonance," Biosens. Bioelectron. 22, 1441-1446 (2007). [CrossRef]
  8. Y. Fujii, Y. Otsuka, and A. Ikeda, "Lithium niobate as an optical waveguide and its application to integrated optics," IEICE Trans. Electron.E 90-C, 1081-1089 (2007). [CrossRef]
  9. T. Fujiwara, S. Sato, H. Mori, and Y. Fujii, "Suppression of crosstalk drift in Ti: LiNbO3 waveguide switches," J. Lightwave Technol. 6, 909-915 (1988). [CrossRef]
  10. H. Nagata, K. Kiuchi, S. Shimotsu, and J. Ogiwara, "Estimation of direct current bias and drift of Ti: LiNbO3 optical modulators," J. Appl. Phys. 76, 1405-1408 (1994). [CrossRef]
  11. Y. Kong, J. Wen, and H. Wang, "New doped lithium niobate crystal with high resistance to photorefraction-LiNbO3:In," Appl. Phys. Lett. 66, 280-281 (1995). [CrossRef]
  12. T. Fujiwara, R. Srivastava, X. Cao, and R. V. Ramaswamy, "Comparison of photorefractive index change in proton-exchanged and Ti-diffused LiNbO3 waveguides," Opt. Lett. 18, 346-348 (1993). [CrossRef] [PubMed]
  13. J. D. Bull, NicolasA. F. Jaeger, and F. Rahmatian, "A new hybrid current sensor for high-voltage applications," IEEE Trans. Power Del. 20, 32-38 (2005). [CrossRef]
  14. B. M. Haas and T. E. Murphy, "A simple, linearized, phase-modulated analog optical transmission system," IEEE Photon. Technol. Lett. 19, 729-731 (2007). [CrossRef]
  15. R. C. Twu, "Zn-diffused 1×2 balanced-bridge optical switch in a y-cut lithium niobate," IEEE Photon. Technol. Lett. 19, 1269-1271 (2007). [CrossRef]
  16. I. Suárez, R. Matesanz. I. Aguirre de Cárcer, P. L. Pernas, F. Jaque, R. Blasco, and G. Lifante, "Antibody binding on LiNbO3:Zn waveguides for biosensor applications," Sens. Actuators B-Chem. 107, 88-92 (2005). [CrossRef]
  17. Ming, C. B. E. Gawith, K. Gallo, M. V. O’Connor, G. D. Emmerson, and P. G. R. Smith, "High conversion efficiency single-pass second harmonic generation in a zinc-diffused periodically poled lithium niobate waveguide," Opt. Express 13, 4862-4868 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited