OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 23 — Nov. 12, 2007
  • pp: 15589–15594

Arbitrary-to-linear or linear-to-arbitrary polarization controller based on Faraday and Pockels effects in a single BGO crystal

Lixiang Chen and Weilong She  »View Author Affiliations

Optics Express, Vol. 15, Issue 23, pp. 15589-15594 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an arbitrary-to-linear or linear-to-arbitrary polarization controller based on the mutual action of Faraday and Pockels effects in a single Bi4Ge3O12 (BGO) crystal after the wave coupling theory describing these two effects. It is demonstrated that, the expected conversion of arbitrary-to-linear or linear-to-arbitrary polarization state of light can be realized by adjusting the applied electric and magnetic fields.

© 2007 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.2090) Optical devices : Electro-optical devices
(260.5430) Physical optics : Polarization

ToC Category:
Optical Devices

Original Manuscript: October 11, 2007
Revised Manuscript: October 25, 2007
Manuscript Accepted: October 25, 2007
Published: November 9, 2007

Lixiang Chen and Weilong She, "Arbitrary-to-linear or linear-to-arbitrary polarization controller based on Faraday and Pockels effects in a single BGO crystal," Opt. Express 15, 15589-15594 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Alferness, "Electrooptic guided-wave device for general polarization transformations," IEEE J. Quantum Electron. 17, 965-969 (1981). [CrossRef]
  2. N. G. Walker and G. R. Walker, "Polarization control for coherent communications," J. Lightwave Technol. 8, 438-458 (1990). [CrossRef]
  3. A. V. Krishnamoorthy, F. Xu, J. E. Ford, and Y. Fainman, "Polarization-controlled multistage switch based on polarization-selective computer-generated holograms," Appl. Opt. 36, 997-1010 (1997). [CrossRef] [PubMed]
  4. C. D. Poole, "Measurement of polarization-mode dispersion in single-mode fibers with random mode coupling," Opt. Lett. 14, 523-525 (1989). [CrossRef] [PubMed]
  5. T. Ono, S. Yamazaki, H. Shimizu, and K. Emura, "Polarization control method for suppressing polarization mode dispersion influence in optical transmission systems," J. Lightwave Technol. 12, 891-898 (1994). [CrossRef]
  6. R. Khosravani, S. A. Havstad, Y. W. Song, P. Ebrahimi, and A. E. Willner, "Polarization-mode dispersion compensation in WDM systems," IEEE Photon. Technol. Lett. 13, 1370-1372 (2001). [CrossRef]
  7. R. Noe, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Schopflin, C. Gungener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch, and W. Haase, "Polarization mode dispersion compensation at 10, 20, and 40 Gb/s with various optical equalizers," J. Lightwave Technol. 17, 1602-1616 (1999). [CrossRef]
  8. G. G. Paulus, F. Grasbon, A. Dreischuh, H. Walther, R. Kopold, and W. Becker, "Above-threshold ionization by an elliptically polarized field: interplay between electronic quantum trajectories," Phys. Rev. Lett. 84, 3791-3794 (2000). [CrossRef] [PubMed]
  9. B. Borca, M. V. Frolov, N. L. Manakov, and A. F. Starace, "Threshold effects on angular distributions for multiphoton detachment by intense elliptically polarized light," Phys. Rev. Lett. 87, 133001 (2001). [CrossRef] [PubMed]
  10. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical torque controlled by elliptical polarization," Opt. Lett. 23, 1-3 (1998). [CrossRef]
  11. J. J. Larsen, K. Hald, N. Bjerre, H. Stapelfeldt, and T. Seideman, "Three dimensional alignment of molecules using elliptically polarized laser fields," Phys. Rev. Lett. 85, 2470-2473 (2000). [CrossRef] [PubMed]
  12. T. Lai, L. Liu, Q. Shou, L. Lei, and W. Lin, "Elliptically polarized pump-probe spectroscopy and its application to observation of electron-spin relaxation in GaAs quantum wells," Appl. Phys. Lett. 85, 4040-4042 (2004). [CrossRef]
  13. W. A. Bonner and B. D. Bean, "Asymmetric photolysis with elliptically polarized light," Orgins Life Evol. Biosphere 30, 513-517 (2000). [CrossRef]
  14. W. H. J. Aarts and G. -D. Khoe, "New endless polarization control method using three fiber squeezers," J. Lightwave Technol. 7, 1033-1043 (1989). [CrossRef]
  15. F. Heismann, "Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems," J. Lightwave Technol. 12, 690-699 (1994). [CrossRef]
  16. H. Shimizu and K. Kaede, "Endless polarization controller using electro-optic waveplates," Electron. Lett. 24, 412-413 (1988). [CrossRef]
  17. J. Prat, J. Comellas, and G. Junyent, "Experimental demonstration of an all-fiber endless polarization controller based on Faraday rotation," Photon. Technol. Lett. 7, 1430-1432 (1995). [CrossRef]
  18. D. Goldring, Z. Zalevsky, G. Shabtay, D. Abraham, and D. Mendlovic, "Magneto-optic-based devices for polarization control," J. Opt. A Pure Appl. Opt. 6, 98-105 (2004). [CrossRef]
  19. X. S. Yao, L. Yan, and Y. Shi, "Highly repeatable all-solid-state polarization-state generator," Opt. Lett. 30, 1324-1326 (2005). [CrossRef] [PubMed]
  20. Y. Zhang, C. Yang, S. Li, H. Yan, J Yin, C. Gu, and G. Jin, "Complete polarization controller based on magneto-optic crystals and fixed quarter wave plates," Opt. Express 14, 3484-3490 (2006). [CrossRef] [PubMed]
  21. T. Saitoh and S. Kinugawa, "Magnetic field rotating-type Faraday polarization controller," Photon. Technol. Lett. 15, 1404-1406 (2003). [CrossRef]
  22. S. H. Rumbaugh, M. D. Jones, and L. W. Casperson, "Polarization control for coherent fiber-optic systems using nematic liquid crystals," J. Lightwave Technol. 8, 459-465 (1990). [CrossRef]
  23. Z. Zhuang, S. -W. Suh, and J. S. Patel, "Polarization controller using nematic liquid crystals," Opt. Lett. 24, 694-696 (1999). [CrossRef]
  24. X. Chen, L. Yan, and X. S. Yao, "Waveplate analyzer using binary magneto-optic rotators," Opt. Express 15, 12989-12994 (2007) [CrossRef] [PubMed]
  25. L. Chen, G. Zheng, and W. She, "Electrically and magnetically controlled optical spanner based on the transfer of spin angular momentum of light in an optically active medium," Phys. Rev. A. 75, 061403(R) (2007). [CrossRef]
  26. P. A. Williams, A. H. Rose, K. S. Lee, D. C. Conrad, G. W. Day, and P. D. Hale, "Optical, thermo-optic, electro-optic, and photoelastic properties of bismuth germanate (Bi4Ge3O12)," Appl. Opt. 35, 3562-3569 (1996). [CrossRef] [PubMed]
  27. L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Pergamon Press, 1984).
  28. W. She and W. Lee, "Wave coupling theory of linear electroopitc effect," Opt. Commun. 195, 303-311 (2001). [CrossRef]
  29. H. Wang, W. Jia, and J. Shen, "Magneto-optical Faraday rotation in Bi4Ge3O12 crystal," Acta Phys. Sin. 34, 126-128 (1985).
  30. R. Nitsche, "Crystal growth and electro-optic effect of bismuth germanate, Bi4 (GeO4)3," J. Appl. Phys. 36, 2358-2360 (1965). [CrossRef]
  31. D. P. Bortfeld and H. Meier, "Refractive indices and electro-optic coefficients of the eulitities Bi4Ge3O12 and Bi4Si3O12," J. Appl. Phys. 43, 5110-5111 (1972). [CrossRef]
  32. Z. Y. Guo, "Standard magnetic field source of automatic adjustment," Metrology and Measurement Technique 30, 20-21 (2003).
  33. T. Matsuzaki, K. Nagamine, K. Ishida, N. Kawamura, S. N. Nakamura, Y. Matsuda, M. Tanase, M. Kato, K. Kurosawa, H. Sugai, K. Kudo, N. Takeda, and G. H. Eaton, "First observation of radiative photons associated with the transfer process from tothrough an intermediate mesomolecule," Phys. Lett. B 527,43-49 (2002). [CrossRef]
  34. J. P. Gordon and H. Kogelnik, "PMD fundamentals: Polarization mode dispersion in optical fibers," Proc. Nat. Acad. Sci. 97, 4541-4550 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited