OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 15628–15636

Diffraction by fractal metallic supergratings

Diana C. Skigin, Ricardo A. Depine, Juan A. Monsoriu, and Walter D. Furlan  »View Author Affiliations

Optics Express, Vol. 15, Issue 24, pp. 15628-15636 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (543 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The reflectance of corrugated surfaces with a fractal distribution of grooves is investigated. Triadic and polyadic Cantor fractal distributions are considered, and the reflected intensity is compared with that of the corresponding periodic structure. The self-similarity property of the response is analyzed when varying the depth of the grooves and the lacunarity parameter. The results confirm that the response is self-similar for the whole range of depths considered, and this property is also maintained for all values of the lacunarity parameter.

© 2007 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.1970) Diffraction and gratings : Diffractive optics

ToC Category:
Diffraction and Gratings

Original Manuscript: June 18, 2007
Revised Manuscript: September 21, 2007
Manuscript Accepted: September 22, 2007
Published: November 12, 2007

Diana C. Skigin, Ricardo A. Depine, Juan A. Monsoriu, and Walter D. Furlan, "Diffraction by fractal metallic supergratings," Opt. Express 15, 15628-15636 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. R. Petit, "Diffraction gratings," C. r. hebd. Seanc. Acad. Sci., Paris,  260, 4454 (1965).
  2. R. C. Hollins and D. L. Jordan, "Measurments of 10.6 μm radiation scattered by a pseudo-random surface of rectangular grooves," Optica Acta,  30,1725-1734 (1983). [CrossRef]
  3. J. R. Andrewartha, J. R. Fox and I. J. Wilson, "Resonance anomalies in the lamellar grating," Optica Acta,  26,69-89 (1977). [CrossRef]
  4. A. Wirgin and A. A. Maradudin, "Resonant enhancement of the electric field in the grooves of bare metallic gratings exposed to S-polarized light," Phys. Rev. B,  31, 5573-5576 (1985). [CrossRef]
  5. E. G. Loewen, M. Nevière and D. Maystre, "Efficiency optimization of rectangular groove gratings for use in the visible and IR regions," Appl. Opt. 18,2262-2266 (1979). [CrossRef] [PubMed]
  6. L. Li, "A modal analysis of lamellar diffraction gratings in conical mountings," J. Mod. Opt. 40,553-573 (1993). [CrossRef]
  7. T. J. Park, H. J. Eom and K. Yoshitomi, "Analysis of TM scattering from finite rectangular grooves in a conducting plane," J. Opt. Soc. Am. A 10,905-911 (1993). [CrossRef]
  8. D. Maystre, "Rigorous theory of light scattering from rough surfaces," J. Opt. 5,43-51 (1984). [CrossRef]
  9. Y. L. Kok, "A boundary value solution to electromagnetic scattering by a rectangular groove in a ground plane," J. Opt. Soc. Am. A 9,302-311 (1992). [CrossRef]
  10. T.-M. Wang and H. Ling, "A connection algorithm on the problem of EM scattering from arbitrary cavities," J. EM Waves and Applics. 5,301-314 (1991).
  11. R. A. Depine and D. C. Skigin, "Scattering from metallic surfaces having a finite number of rectangular grooves," J. Opt. Soc. Am. A 11,2844-2850 (1994). [CrossRef]
  12. D. C. Skigin, V. V. Veremey and R. Mittra, "Superdirective radiation from finite gratings of rectangular grooves," IEEE Trans. Antennas Propag. 47,376-383 (1999). [CrossRef]
  13. A. N. Fantino, S. I. Grosz and D. C. Skigin, "Resonant effect in periodic gratings comprising a finite number of grooves in each period," Phys. Rev. E 64,016605 (2001). [CrossRef]
  14. S. I. Grosz, D. C. Skigin and A. N. Fantino, "Resonant effects in compound diffraction gratings: influence of the geometrical parameters of the surface," Phys. Rev. E 65,056619 (2002). [CrossRef]
  15. D. C. Skigin and R. A. Depine, "Diffraction by dual-period gratings," Appl. Opt. 46,1385-1391 (2007). [CrossRef] [PubMed]
  16. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco, 1982.
  17. Y. Sakurada, J. Uozumi, and T Asakura, "Fresnel diffraction by 1-D regular fractals," Pure Appl. Opt. 1,29-40 (1992). [CrossRef]
  18. O. Trabocchi, S. Granieri, and W.D. Furlan, "Optical propagation of fractal fields. Experimental analysis in a single display," J. Mod. Opt. 48,1247-1253 (2001).
  19. A. Lakhtakia, N. S. Holter, V. K. Varadan and V. V. Varadan, "Self-similarity in diffraction by a self-similar fractal screen," IEEE Transactions on Antennas and Propagation 35, 236-239 (1987). [CrossRef]
  20. F. Giménez, J.A. Monsoriu, W.D. Furlan, and A. Pons, "Fractal photon sieves," Opt. Express 14,11958-11963 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-25-11958 [CrossRef] [PubMed]
  21. S. A. Ledesma, C. C. Iemmi and V. L. Brudny, "Scaling properties of the scattered field produced by fractal gratings," Opt. Commun. 144,292-298 (1997). [CrossRef]
  22. A. D. Jaggard and D. L. Jaggard, "Scattering from fractal superlattices with variable lacunarity," J. Opt. Soc. Am. A 15,1626-1635 (1998). [CrossRef]
  23. R. E. Plotnick, R. H. Gardner, W. W. Hargrove, K. Prestegaard, and M. Perlmutter, "Lacunarity analysis: A general technique for the analysis of spatial patterns," Phys. Rev. E 53,5461-5468 (1996). [CrossRef]
  24. J. A. Monsoriu, G. Saavedra, and W. D. Furlan, "Fractal zone plates with variable lacunarity," Opt. Express 12,4227-4234 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-18-4227 [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited