OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 15656–15673

High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events

D. M. Grant, J. McGinty, E. J. McGhee, T. D. Bunney, D. M. Owen, C. B. Talbot, W. Zhang, S. Kumar, I. Munro, P. M. P. Lanigan, G. T. Kennedy, C. Dunsby, A. I. Magee, P. Courtney, M. Katan, M. A. A. Neil, and P. M. W. French  »View Author Affiliations

Optics Express, Vol. 15, Issue 24, pp. 15656-15673 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (835 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a time domain optically sectioned fluorescence lifetime imaging (FLIM) microscope developed for high-speed live cell imaging. This single photon excited system combines wide field parallel pixel detection with confocal sectioning utilizing spinning Nipkow disc microscopy. It can acquire fluorescence lifetime images of live cells at up to 10 frames per second (fps), permitting high-speed FLIM of cell dynamics and protein interactions with potential for high throughput cell imaging and screening applications. We demonstrate the application of this FLIM microscope to real-time monitoring of changes in lipid order in cell membranes following cholesterol depletion using cyclodextrin and to the activation of the small GTP-ase Ras in live cells using FRET.

© 2007 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.1790) Microscopy : Confocal microscopy
(180.2520) Microscopy : Fluorescence microscopy
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: September 12, 2007
Revised Manuscript: November 3, 2007
Manuscript Accepted: November 3, 2007
Published: November 12, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

David M. Grant, J. McGinty, E. J. McGhee, T. D. Bunney, D. M. Owen, C. B. Talbot, W. Zhang, S. Kumar, I. Munro, P. M. Lanigan, G. T. Kennedy, C. Dunsby, A. I. Magee, P. Courtney, M. Katan, M. A. A. Neil, and P. M. W. French, "High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events," Opt. Express 15, 15656-15673 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. B. N. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, "The fluorescence toolbox for assessing protein location and function," Science Apr  312,217-224 (2006).
  2. F. S. Wouters, P. J. Verveer, and P. I. Bastiaens, "Imaging biochemistry inside cells," Trends Cell Biol. May  11, 203-211 (2001). [CrossRef]
  3. D. S. Lidke, P. Nagy, B. G. Barisas, R. Heintzmann, J. N. Post, K. A. Lidke, A. H. Clayton, D. J. Arndt-Jovin, and T. M. Jovin, "Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET)," Biochem. Soc. Trans. 31, 1020-1027 (2003). [CrossRef] [PubMed]
  4. D. S. Elson,  et al, Reviews in Fluorescence 2006 (Springer, US, 2006), Chap 22.
  5. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd Edition (Springer, US, 2006). [CrossRef]
  6. R. M. Clegg, O. Holub, and C. Gohlke, "Fluorescence lifetime-resolved imaging: measuring lifetimes in an image," Methods Enzymol. 360, 509-42 (2003). [CrossRef] [PubMed]
  7. E. A. Jares-Erijman and T. M. Jovin, "Imaging molecular interactions in living cells by FRET microscopy," Curr. Opin. Chem. Biol. Oct  10(5), 409-416 (2006). [CrossRef]
  8. D. M. Grant, D. S. Elson, D. Schimpf, C. Dunsby, J. Requejo-Isidro, E. Auksorius, I. Munro, M. A. A. Neil, P. M. W. French, E. Nye, G. W. Stamp, and P. Courtney "Optically sectioned fluorescence lifetime imaging using a Nipkow disc microscope and a tunable ultrafast continuum excitation source," Opt. Lett. 30,3353-3355 (2005). [CrossRef]
  9. E. B. van Munster, J. Goedhart, G. J. Kremers, E. M. Manders, and T. W. Gadella, "Combination of a spinning disc confocal unit with frequency-domain fluorescence lifetime imaging microscopy," Cytometry A. Apr  71, 207-214 (2007). [CrossRef]
  10. M. J. Cole, J. Siegel, S. E. Webb, R. Jones, K. Dowling, M. J. Dayel, D. Parsons-Karavassilis, P. M. W. French, M. J. Lever, L. O. Sucharov, M. A. A. Neil, R. Juskaitis, and T. Wilson, "Time domain whole-field fluorescence lifetime imaging with optical sectioning," J. Microsc. 203,246-57 (2001). [CrossRef] [PubMed]
  11. H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskala, and W. G. J. H. M van Sark, "Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution," J. Microsc. 206, 218-224 (2002). [CrossRef] [PubMed]
  12. M. Kollner and J. Wolfrum, "How many photons are necessary for fluorescence-lifetime measurements?Chem. Phys. Lett. 200, 199-204 (1992). [CrossRef]
  13. P. J. Verveer and P. I. Bastiaens, "Evaluation of global analysis algorithms for single frequency fluorescence lifetime imaging microscopy data," J. Microsc. Jan  209, 1-7 (2003). [CrossRef]
  14. D. V. O’Connor and D. Phillips: Time-Correlated Single Photon Counting (Academic Press, London, 1984).
  15. W. Becker, Advanced Time Correlated Single Photon Counting Techniques, (Springer, New York 2005). [CrossRef]
  16. E. Wang, C. M. Babbey, and K. W. Dunn, "Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems," J. Microsc. 218,148-159 (2005). [CrossRef] [PubMed]
  17. M. Straub and S. W. Hell, "Fluorescence lifetime three-dimensional microscopy with picosecond precision using a multifocal multiphoton microscope," Appl. Phys. Lett. 73, 1769-1771 (1998). [CrossRef]
  18. S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, "Fluorescence-lifetime imaging with a multifocal two-photon microscope," Opt. Lett. 29, 2884-2886 (2004). [CrossRef]
  19. J. Requejo-Isidro, J. McGinty, I. Munro, D. S. Elson, N. P. Galletly, M. J. Lever, M. A. A. Neil, G. W. H. Stamp, P. M. W. French, P. A. Kellett, J. D. Hares, and A. K. L. Dymoke-Bradshaw, "High-speed wide-field time-gated endoscopic fluorescence- lifetime imaging," Opt. Lett. 29, 2249-2251 (2004). [CrossRef] [PubMed]
  20. R. K. Benninger, Y. Koc, O. Hofmann, J. Requejo-Isidro, M. A. A. Neil, P. M. W. French, and A. J. DeMello, "Quantitative 3D mapping of fluidic temperatures within microchannel networks using fluorescence lifetime imaging," Anal. Chem. 78, 2272-2278 (2006). [CrossRef] [PubMed]
  21. M. A. A. Neil, R. Juskaitis, and T. Wilson, "Method of obtaining optical sectioning by using structured light in a conventional microscope," Opt. Lett. 22, 1905-1907 (1997). [CrossRef]
  22. G. McConnell, "Confocal laser scanning fluorescence microscopy with a visible continuum source," Opt. Express 12, 2844-2850 (2004). [CrossRef] [PubMed]
  23. C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Önfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D: Appl. Phys. 37, 3296-3303 (2004). [CrossRef]
  24. K. Simons and E. Ikonen, "Functional rafts in cell membranes," Nature 387, 569-572 (1997) [CrossRef] [PubMed]
  25. A. I. Magee, N. Pirinen, J. Adler, S. N. Pagakis, and I. Parmryd, "Lipid rafts: cell surface platforms for T cell signaling," Biol. Res. 35, 127-131 (2002). [CrossRef] [PubMed]
  26. G. van Meer and Q. Lisman, "Sphingolipid transport: rafts and translocators," J. Biol. Chem. 277, 25855-25858 (2002). [CrossRef] [PubMed]
  27. K. Simons and R. Ehehalt, "Cholesterol, lipid rafts, and disease," J. Clin. Invest. Sep  110, 597-603 (2002).
  28. L. Jin, A. C. Millard, J. P. Wuskell, X. Dong, D. Wu, H. A. Clark, and L. M. Loew, "Characterization and application of a new optical probe for membrane lipid domains," Biophys. J. 90, 2563-2575 (2006). [CrossRef] [PubMed]
  29. D. M. Owen, P. M. P. Lanigan, C. Dunsby, I. Munro, D. M. Grant, M. A. A. Neil, P. M. W. French, and A. I. Magee, "Fluorescence lifetime imaging provides enhanced contrast when imaging the phase-sensitive dye di-4-ANEPPDHQ in model membranes and live cells," Biophys. J. 90, L80-L82 (2006). [CrossRef] [PubMed]
  30. R. R. Kellner, C. J. Baier, K. I. Willig, S. W. Hell, and F. J. Barrantes, "Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy," Neuroscience 144, 135-143 (2007). [CrossRef]
  31. N. Tanimura, M. Nagafuku, Y. Minaki, Y. Umeda, F. Hayashi, J. Sakakura, A. Kato, D. R. Liddicoat, M. Ogata, T. Hamaoka, and A. Kosugi, "Dynamic changes in the mobility of LAT in aggregated lipid rafts upon T cell activation," J. Cell Biol. 160, 125-135 (2003). [CrossRef] [PubMed]
  32. K. Gaus, E. Gratton, E. P. Kable, A. S. Jones, I. Gelissen, L. Kritharides, and W. Jessup, "Visualizing lipid structure and raft domains in living cells with two photon microscopy," Proc. Natl. Acad. Sci. U S A 100, 15554-15559 (2003). [CrossRef] [PubMed]
  33. A. Miyawaki, J. Llopis, R. Heim, J. M. McCaffery, J. A. Adams, M. Ikura, and R. Y. Tsien, "Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin," Nature 388, 882-887 (1997). [CrossRef] [PubMed]
  34. T. Nakamura, K. Aoki, and M. Matsuda, "Monitoring spatio-temporal regulation of Ras and Rho GTPase with GFP-based FRET probes," Methods 37, 146-153 (2005). [CrossRef] [PubMed]
  35. O. Rocks, A. Peyker, M. Kahms, P. J. Verveer, C. Koerner, M. Lumbierres, J. Kuhlmann, H. Waldmann, A. Wittinghofer, and P. I. Bastiaens, "An acylation cycle regulates localization and activity of palmitoylated Ras isoforms," Science 307, 1746-1752 (2005). [CrossRef] [PubMed]
  36. A. Peyker, O. Rocks, and P. I. Bastiaenes, "Imaging activation of two Ras isoforms simultaneously in a single cell," Chembiochem. 6, 78-85 (2005). [CrossRef] [PubMed]
  37. M. Augsten, R. Pusch, C. Biskup, K. Rennert, U. Wittig, K. Beyer, A. Blume, R. Wetzker, K. Friedrich, and I. Rubio, "Live-cell imaging of endogenous Ras-GTP illustrates predominant Ras activation at the plasma membrane," EMBO Rep. 7, 46-51 (2006). [CrossRef]
  38. R. Yasuda, C. D. Harvey, H. Zhong, A. Sobczyk, L. van Aelst, and K. Svoboda, "Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging," Nat. Neurosci. 9, 283-291 (2006). [CrossRef] [PubMed]
  39. D. S. Elson,  et al, "Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier," New J. Phys. 6, 1367-2630 (2004). [CrossRef]
  40. A. V. Agronskaia, L. Tertoolen, and H. C. Gerritsen, "High frame rate fluorescence lifetime imaging," J. Phys. D. 36, 1655-1662 (2003). [CrossRef]
  41. R. M. Ballew and J. N. Demas, "An error analysis of the rapid lifetime determination method for the evaluation of single exponential decays," Anal. Chem. 61, 30-33 (1989). [CrossRef]
  42. I. Munro, J. McGinty, N. Galletly, J. Requejo-Isidro, P. M. P. Lanigan, D. S. Elson, C. Dunsby, M. A. A. Neil. M. J. Lever, G.W. Stamp, and P. M. W. French "Toward the clinical application of time-domain fluorescence lifetime imaging,"J. Biomed. Opt. 10, 051403 (2005). [CrossRef] [PubMed]
  43. A. Esposito, C. P. Dohm, M. Bahr, and F. S. Wouters, "Unsupervised fluorescence lifetime imaging microscopy for high content and high throughput screening," Mol. Cell Proteomics 6, 1446-54 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited