OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 15674–15701

Mode scalability in bent optical fibers

Ross T. Schermer  »View Author Affiliations


Optics Express, Vol. 15, Issue 24, pp. 15674-15701 (2007)
http://dx.doi.org/10.1364/OE.15.015674


View Full Text Article

Enhanced HTML    Acrobat PDF (711 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper introduces a simple, analytical method for generalizing the behavior of bent, weakly-guided fibers and waveguides. It begins with a comprehensive study of the modes of the bent step-index fiber, which is later extended to encompass a wide range of more complicated waveguide geometries. The analysis is based on the introduction of a scaling parameter, analogous to the V-number for straight step-index fibers, for the bend radius. When this parameter remains constant, waveguides of different bend radii, numerical apertures and wavelengths will all propagate identical mode field distributions, except scaled in size. This allows the behavior of individual waveguides to be broadly extended, and is especially useful for generalizing the results of numerical simulations. The technique is applied to the bent step-index fiber in this paper to arrive at simple analytical formulae for the propagation constant and mode area, which are valid well beyond the transition to whispering-gallery modes. Animations illustrating mode deformation with respect to bending and curves describing polarization decoupling are also presented, which encompass the entire family of weakly-guided, step-index fibers.

© 2007 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(140.3510) Lasers and laser optics : Lasers, fiber
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(230.7370) Optical devices : Waveguides

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 9, 2007
Revised Manuscript: October 10, 2007
Manuscript Accepted: October 12, 2007
Published: November 12, 2007

Citation
Ross T. Schermer, "Mode scalability in bent optical fibers," Opt. Express 15, 15674-15701 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15674


Sort:  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Fiber Optic Communication Systems, 2nd Edition. (Wiley, New York, 1997).
  2. C. H. Cox, Analog Optical Links, Theory and Practice, (Cambridge, 2004). [CrossRef]
  3. E. Udd, Fiber Optic Sensors: An Introduction for Engineers and Scientists, (Wiley, New York, 1991).
  4. F. T. S. Yu and S. Yin, Fiber Optic Sensors, (CRC, 2002). [CrossRef]
  5. J.-G. Werthen and M. Cohen, "The Power of Light: Photonic Power Innovations in Medical, Energy and Wireless Applications," Photonics Spectra 40, 68-72 (2006).
  6. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd Edition, (Stanford, New York, 2001). [CrossRef]
  7. M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, (Cambridge, New York, 2007).
  8. S. J. Garth, "Birefringence in Bent Single-Mode Fibers," J. Lightwave Technol. 6, 445-449 (1988). [CrossRef]
  9. H.-G. Unger, Planar Optical Waveguides and Fibres (Oxford, 1977), Chap. 6.
  10. D. Marcuse, "Field Deformation and Loss Caused by Curvature of Optical Fibers," J. Opt. Soc. Am. 66, 311-320 (1976). [CrossRef]
  11. S. J. Garth, "Mode Behaviour on Bent Planar Dielectric Waveguides," IEE Proc.: Optoelectron. 142, 115-120 (1995). [CrossRef]
  12. T. Sørensen,  et al, "Spectral Macro-Bending Loss Considerations for Photonic Crystal Fibers," IEE Proc.: Optoelectron. 149, 206-210 (2002). [CrossRef]
  13. J. M. Fini, Bend-resistant design of conventional and microstructure fibers with very large mode area," Opt. Express 14, 69-81 (2006). [CrossRef] [PubMed]
  14. R. T. Schermer and J. H. Cole, "Improved bend loss formula verified for Optical Fiber by simulation and experiment," IEEE. J. Quantum Electron. 43, 899-909 (2007). [CrossRef]
  15. R. Scarmozzino et al, "Numerical techniques for modeling guided-wave photonic devices," IEEE J. Sel. Topics Quantum Electron. 6, 150-162 (2000). [CrossRef]
  16. M. Heiblum and J. H. Harris, "Analysis of Curved Optical Waveguides by Conformal Transformation," IEEE J. Quantum Electron. QE-11, 75-83 (1975). [CrossRef]
  17. D. Gloge, "Weakly Guiding Fibers," Appl. Opt. 10, 2252-2258 (1971). [CrossRef] [PubMed]
  18. A. Melloni,  et al, "Determination of Bend Mode Characteristics in Dielectric Waveguides," J. Lightw. Tech. 19, 571-577 (2001). [CrossRef]
  19. J. M. Fini, "Bend-Compensated Design of Large Mode Area Fibers," Opt. Lett. 31, 1963-1965 (2006). [CrossRef] [PubMed]
  20. J. M. Fini and S. Ramachandran, "Natural Bend-Distortion Immunity of Higher-Order Mode Large Mode Area Fibers," Opt. Lett. 32, 748-750 (2007). [CrossRef] [PubMed]
  21. J. M. Fini, "Intuitive Modeling of Bend Distortion in Large Mode Area Fibers," Opt. Lett. 32, 1632-1634 (2007). [CrossRef] [PubMed]
  22. K. Nagano, S. Kawakami and S. Nishida, "Change of the Refractive Index in an Optical Fiber Due to External Forces," Appl. Opt. 17, 2080-2085 (1978). [CrossRef] [PubMed]
  23. D. Marcuse, Light Transmission Optics, 2nd Edition, (Van Nostrand, New York, 1982).
  24. R. T. Schermer is preparing a manuscript to be titled "Bend Loss in Weakly-Guided Fibers."
  25. A. W. Snyder and W. R. Young, "Modes of Optical Waveguides," J. Opt. Soc. Am. 68, 297-309 (1978). [CrossRef]
  26. J. R. Wait, "Electromagnetic Whispering Gallery Modes in a Dielectric Rod," Radio Science 2, 1005-1017 (1967).
  27. D. Marcuse, "Influence of Curvature on the Losses of Doubly-Clad Fibers," Appl. Opt. 21, 4208-4213 (1982). [CrossRef] [PubMed]
  28. J. P. Koplow, D. A. V. Kliner and L. Goldberg, "Single-Mode Operation of a Coiled Multimode Fiber Amplifier," Opt. Lett. 25, 442-444 (2000). [CrossRef]
  29. R. L. Farrow,  et al, "Peak-power limits on fiber amplifiers imposed by self-focusing," Opt. Lett. 23, 3423-3425 (2006). [CrossRef]
  30. M. E. Fermann, "Single-mode excitation of multimode fibers with ultrashort pulses," Opt. Lett. 23, 52-54 (1998). [CrossRef]
  31. S. Ramachandran,  et al, "Scaling to Ultra-Large-Aeff using Higher-Order Mode Fibers," in Proceedings of the 2006 Conference on Lasers and Electro-Optics, pp. CThAA2.
  32. M. Hotolenanu,  et al, "High order modes suppression in large mode area active fibers by controlling the radial distribution of the rare earth dopant," Proc. SPIE 6102, 61021T (2006). [CrossRef]
  33. H. L Offerhaus,  et al, "High-Energy Single-Transverse-Mode Q-Switched Fiber Laser based on Multimode Large Mode Area Erbium-Doped Fiber," Opt. Lett. 23, 1683 (1998). [CrossRef]
  34. U. Griebner,  et al, "Efficient Laser Operation with nearly diffraction-limited output from a diode-pumped heavily Nd-doped multimode fiber," Opt. Lett. 21, 266-268 (1996). [CrossRef] [PubMed]
  35. C. C. Renaud,  et al, "Compact High-Energy Q-Switched Cladding-Pumped Fiber Laser with a Tuning Range Over 40 nm," IEEE Photon. Technol. Lett. 11, 976-978 (1999). [CrossRef]
  36. R. Ulrich, S. C. Rashleigh and W. Eickhoff, "Bending-induced birefringence in single-mode fibers," Opt. Lett. 5, 273-275 (1980). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (1940 KB)     
» Media 2: MOV (2360 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited