OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 15702–15721

Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition

A. Gilerson, J. Zhou, S. Hlaing, I. Ioannou, J. Schalles, B. Gross, F. Moshary, and S. Ahmed  »View Author Affiliations

Optics Express, Vol. 15, Issue 24, pp. 15702-15721 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (318 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on HYDROLIGHT simulations of more than 2000 reflectance spectra from datasets typical of coastal waters with highly variable optically active constituents as well as on intercomparisons with field measurements, the magnitude of chlorophyll fluorescence was analyzed and parameterized as a function of phytoplankton, CDOM, and suspended inorganic matter concentrations. Using the parameterizations developed, we show that variations in the fluorescence component of water leaving radiance in coastal waters are due more to the variability of attenuation in the water than to the variability of the fluorescence quantum yield, which we estimate to be relatively stable at around 1%. Finally, the ranges of water conditions where fluorescence plays a significant role in the reflectance NIR peak and where it is effectively undetectable are also determined.

© 2007 Optical Society of America

OCIS Codes
(010.4450) Atmospheric and oceanic optics : Oceanic optics
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: September 14, 2007
Revised Manuscript: November 6, 2007
Manuscript Accepted: November 6, 2007
Published: November 12, 2007

A. Gilerson, J. Zhou, S. Hlaing, I. Ioannou, J. Schalles, B. Gross, F. Moshary, and S. Ahmed, "Fluorescence component in the reflectance spectra from coastal waters. Dependence on water composition," Opt. Express 15, 15702-15721 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. R. M. Letelier and M. R. Abbott, "An analysis of Chlorophyll Fluorescence Algorithms for the Moderate Resolution Imaging Spectrometer (MODIS)," Remote Sens. Environ. 58, 215-223 (1996). [CrossRef]
  2. Y. Huot, C. A. Brown, and J. J. Cullen, "New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products," Limnol. Oceanogr. Methods 3, 108 - 130 (2005). [CrossRef]
  3. C. Hu, F. E. Muller-Karger, C. J. Taylor, K. L. Carder, C. Kelble, E. Johns, and C. A. Heil, "Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters," Remote Sens. Environ. 97, 311-321 (2005). [CrossRef]
  4. J. F. R. Gower, R. Doerffer, and G. A. Borstad, "Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS," Int. J. Remote Sens. 20, 1771-1786 (1999). [CrossRef]
  5. G. Dall’Olmo, A. A. Gitelson, D. C. Rundquist, B. Leavitt, T. Barrow and J. C. Holz, "Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands," Remote Sens. Environ. 96, 176-187 (2005). [CrossRef]
  6. S. Ahmed, A. Gilerson, J. Zhou, J. Chowdhary, I. Ioannou, R. Amin, B. Gross, and F. Moshary, "Evaluation of the impact of backscatter spectral characteristics on Chl retrievals in coastal waters," Proc. SPIE 6406 (2006). [CrossRef]
  7. A. A. Gitelson, J. F. Schalles, and C. M. Hladik, "Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study," Remote Sens. Environ. 109, 464-4722007. [CrossRef]
  8. S. R. Laney, R. M. Letelier, and M. R. Abbott, "Parameterizing the natural fluorescence kinetics of Thalassiosira weissflogii," Limnol. Oceanogr. 50, 1499-1510 (2005). [CrossRef]
  9. J. F. Schalles, "Optical Remote Sensing techniques to estimate Phytoplankton Chlorophyll a concentrations in coastal waters with varying suspended matter and CDOM concentrations," in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L. L. Richardson and E. F. LeDrew, eds. (Springer, 2006), Chap. 3.
  10. S. Ahmed, A. Gilerson, A. Gill, B. M. Gross, F. Moshary, J. Zhou, "Separation of fluorescence and elastic scattering from algae in seawater using polarization discrimination," Opt. Commun. 235, 23-30 (2004). [CrossRef]
  11. A. Gilerson, J. Zhou, M. Oo, J. Chowdhary, B. Gross, F. Moshary, and S. Ahmed, "Retrieval of fluorescence from reflectance spectra of algae in sea water through polarization discrimination: modeling and experiments," Appl. Opt. 45, 5568-5581 (2006). [CrossRef] [PubMed]
  12. R. A. Arnone, Z. P. Lee, P. Martinolich, B. Casey, and S. D. Ladner, "Characterizing the optical properties of coastal waters by coupling 1 km and 250 m channels on MODIS - Terra," in Proc. Ocean Optics XVI, Santa Fe, New Mexico (2002).
  13. M. Wang and W. Shi, "Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies," Geophys. Res. Lett. 32, L13606 (2005). [CrossRef]
  14. B. Franz, "MODIS Land Bands for Ocean Remote Sensing: Application to Chesapeake Bay," presented at the MODIS Science Team Meeting, College Park, MD, Oct., 2006.
  15. M. Babin, A. Morel and B. Gentili, "Remote sensing of sea surface Sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence," Int. J. Remote Sens. 17, 2417-2448 (1996). [CrossRef]
  16. Z. Lee, K. L. Carder, R. Arnone, "Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep water," Appl. Opt. 41, 5755-5772 (2002). [CrossRef] [PubMed]
  17. J. Fischer and U. Kronfeld, "Sun-stimulated chlorophyll fluorescence. 1. Influence of oceanic properties," Int. J. Remote Sens. 11, 2125-2147 (1990). [CrossRef]
  18. J. F. R. Gower, L. Brown, and G. A. Borstad, "Observation of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor, "Can. J. Remote Sens. 30, 17-25 (2004). [CrossRef]
  19. C. S. Roesler and M. J. Perry, "In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance," J. Geophys. Res. 100, C7, 13279-13294 (1995). [CrossRef]
  20. C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic Press, New York, 1994).
  21. C. D. Mobley and L. K. Sundman, HYDROLIGHT 4.2, Sequoia Scientific, Inc. (2001).
  22. R. R. Bidigare, M. E. Ondrusek, J. H. Morrow, and D. A. Kiefer, "In vivo absorption properties of algal pigments," Proc. SPIE Ocean Optics X 1302, 290-302 (1990).
  23. S. Ahmed, A. Gilerson, J. Zhou, I. Ioannou, B. Gross, and F. Moshary, "Impact of apparent fluorescence shift on retrieval Algorithms for coastal waters," in Proc. Ocean Optics XVIII, Montreal, Canada (2006).
  24. Standard methods for the examination of water and wastewater (20th edition). Section 1200 - Chlorophyll. American Public Health Association, Washington, D.C. (1998).
  25. M. Babin, D. Stramski, G. M. Ferrari, H. Claustre, A. Bricaud, G. Obolensky, and N. Hoepffner, "Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe," J. Geophys. Res. 108, C7, 321110.1029/2001JC000882 (2003). [CrossRef]
  26. R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).
  27. Z. P. Lee, http://www.ioccg.org/groups/OCAG_data.html.
  28. R. Pope and E. Fry, "Absorption spectrum (380 - 700 nm) of pure waters: II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997). [CrossRef]
  29. D. Stramski., A. Bricaud, and A. Morel, "Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community," Appl. Opt. 40, 2929-2945 (2001). [CrossRef]
  30. M. S. Twardowski, E. Boss, J. B. Macdonald, W. Scott Pegau, A. H. Barnard and J. V. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Res. 106, 14129-14142 (2001). [CrossRef]
  31. K. J. Voss, "A spectral model of the beam attenuation coefficient in the ocean and coastal areas," Limnol. Oceanogr. 37, 501-509 (1992). [CrossRef]
  32. C. S. Roesler and E. Boss, "Spectral beam attenuation coefficient retrieved from ocean color inversion," Geophys. Res. Lett. 30, 1468, doi:10.1029/2002GL016185 (2003). [CrossRef]
  33. A. Morel, "Optical properties of pure water and pure sea water," in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds., (Academic, New York, 1974).
  34. M. Sydor and R. A. Arnone, "Effect of suspended particulate and dissolved organic matter on remote sensing of coastal and riverine waters," Appl. Opt. 36, 6905-6912 (1997). [CrossRef]
  35. L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials," Limnol. Oceanogr. 26, 671-689 (1981). [CrossRef]
  36. P. Gege and A. Albert, "A tool for inverse modeling of spectral measurements in deep and shallow waters" in Remote Sensing of Aquatic Coastal Ecosystem Processes: Science and Management Applications, L. L. Richardson and E. F. LeDrew, eds., (Springer, 2006), Chap. 4. [CrossRef]
  37. A. M. Ciotti, M. R. Lewis, and J. J. Cullen, "Assessment of the relationships between dominant cell size in natural phytoplankton communities and the spectral shape of the absorption coefficient," Limnol. Oceanogr. 47, 404-417 (2002). [CrossRef]
  38. A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization," J. Geophys. Res. 100, 13321-13332 (1995). [CrossRef]
  39. W. Hou, Z. Lee, and A. D. Weidemann, "Why does the Secchi disk disappear? An imaging perspective," Opt. Express 15, 2791-2802 (2007). [CrossRef] [PubMed]
  40. D. Pozdnyakov, A. Lyaskovsky, H. Grassl and L. Petterson, "Numerical modeling of transspectral processes in natural waters: implications for remote sensing," Int. J. Remote Sens. 23, 1581-1607 (2002). [CrossRef]
  41. J. F. Schalles, A. Gitelson, Y. Z. Yacobi, and A. E. Kroenke, "Estimation of chlorophyll a from time series measurements of high spectral resolution reflectance in an eutrophic lake," J. Phycology 34, 383-390 (1998). [CrossRef]
  42. A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem," Appl. Opt. 35, 4850-4862 (1996). [CrossRef] [PubMed]
  43. H. Loisel and A. Morel, "Non-isotropy of the upward radiance field in typical coastal (Case 2) waters," Int. J. Remote Sens. 22, 275-295 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited