OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 15797–15811

Full-vectorial finite element method based eigenvalue algorithm for the analysis of 2D photonic crystals with arbitrary 3D anisotropy

Sen-ming Hsu and Hung-chun Chang  »View Author Affiliations


Optics Express, Vol. 15, Issue 24, pp. 15797-15811 (2007)
http://dx.doi.org/10.1364/OE.15.015797


View Full Text Article

Enhanced HTML    Acrobat PDF (575 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A full-vectorial finite element method based eigenvalue algorithm is developed to analyze the band structures of two-dimensional (2D) photonic crystals (PCs) with arbitray 3D anisotropy for in-planewave propagations, in which the simple transverse-electric (TE) or transverse-magnetic (TM) modes may not be clearly defined. By taking all the field components into consideration simultaneously without decoupling of the wave modes in 2D PCs into TE and TM modes, a full-vectorial matrix eigenvalue equation, with the square of the wavenumber as the eigenvalue, is derived. We examine the convergence behaviors of this algorithm and analyze 2D PCs with arbitrary anisotropy using this algorithm to demonstrate its correctness and usefulness by explaining the numerical results theoretically.

© 2007 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(230.3990) Optical devices : Micro-optical devices
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Photonic Crystals

History
Original Manuscript: August 28, 2007
Revised Manuscript: November 12, 2007
Manuscript Accepted: November 13, 2007
Published: November 14, 2007

Citation
Sen-ming Hsu and Hung-chun Chang, "Full-vectorial finite element method based eigenvalue algorithm for the analysis of 2D photonic crystals with arbitrary 3D anisotropy," Opt. Express 15, 15797-15811 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15797


Sort:  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486- 2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 1995).
  4. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  5. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999). [CrossRef]
  6. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, "Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency," Phys. Rev. B 54, 7837-7842 (1996). [CrossRef]
  7. M. Qiu and S. He, "A nonorthogonal finite-difference time-domain method for computing the band structure of a two-dimensional photonic crystal with dielectric and metallic inclusions," J. Appl. Phys. 87, 8268-8275 (2000). [CrossRef]
  8. L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, "An efficient finite-element method for the analysis of photonic band-gap materials," in 1999 IEEE MTT-S Dig. 4, 1703-1706 (1999).
  9. C. P. Yu and H. C. Chang, "Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals," Opt. Express 12, 1397-1408 (2004). [CrossRef] [PubMed]
  10. P. J. Chiang, C. P. Yu, and H. C. Chang, "Analysis of two-dimensional photonic crystals using a multidomain pseudospectral method," Phys. Rev. E 75, 026703 (2007). [CrossRef]
  11. I. H. H. Zabel and D. Stroud, "Photonic band structures of optically anisotropic periodic arrays," Phys. Rev. B 48, 5004-5012 (1993). [CrossRef]
  12. Z. Y. Li, B. Y. Gu, and G. Z. Yang, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998). [CrossRef]
  13. C. Y. Liu and L.W. Chen, "Tunable band gap in a photonic crystal modulated by a nematic liquid crystal," Phys. Rev. B 72, 045133 (2005). [CrossRef]
  14. S. M. Hsu, M. M. Chen, and H. C. Chang, "Investigation of band structures for 2D non-diagonal anisotropic photonic crystals using a finite element method based eigenvalue algorithm," Opt. Express 15, 5416-5430 (2007). [CrossRef] [PubMed]
  15. G. Alagappan, X. W. Sun, P. Shum, M. B. Yu, and D. den Engelsen, "Symmetry properties of two-dimensional anisotropic photonic crystals," J. Opt. Soc. Am. A 23, 2002-2013 (2006). [CrossRef]
  16. G. E. Antilla and N. G. Alexopoulos, "Scattering from complex three-dimensional geometries by a curvilinear hybrid finite-element-integral equation approach," J. Opt. Soc. Am. A 11, 1445-1457 (1994). [CrossRef]
  17. L. Zhang and N. G. Alexopoulos, "Finite-element based techniques for the modeling of PBG materials," Electromagnetics 19, 225-239 (1999). [CrossRef]
  18. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech. 47, 2059-2074 (1999). [CrossRef]
  19. J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, Inc., New York, 2002).
  20. M. Koshiba and Y. Tsuji, "Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems," J. Lightwave Technol. 18, 737-743 (2000). [CrossRef]
  21. Z. Y. Li, B. Y. Gu, and G. Z. Yang, "Large absolute band gap in 2D anisotropic photonic crystals," Phys. Rev. Lett. 81, 2574-2577 (1998). [CrossRef]
  22. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley and Sons, Inc., New York, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited