OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 15854–15862

Invariant resolution dynamic focus OCM based on liquid crystal lens

S. Murali, K. S. Lee, and J. P Rolland  »View Author Affiliations


Optics Express, Vol. 15, Issue 24, pp. 15854-15862 (2007)
http://dx.doi.org/10.1364/OE.15.015854


View Full Text Article

Enhanced HTML    Acrobat PDF (2069 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A primary limitation of optical coherence microscopy is the lack of sufficient lateral resolution over a usable imaging volume for diagnostic applications, even with high-numerical aperture imaging optics. In this paper, we first motivate the benefit of refocusing at multiple depths in a highly scattering biological sample using optical coherence microscopy, which experimentally shows invariant 2.5 µm axial and 6.5 µm lateral resolution throughout the sample. We then present the optical system design of a hand-held probe with the advanced capability to dynamically focus with no moving parts to a depth of 2 mm in skin-equivalent tissue at 3 µm resolution throughout an 8 cubic millimeter imaging volume. The built-in dynamic focusing ability is investigated with an addressable liquid crystal lens embedded in a custom-designed optics optimized for a Ti:Sa pulsed broadband laser source of bandwidth 100nm centered at 800nm. The design was developed not only to account for refocusing into the tissue but also to minimize and compensate for the varying on-axis and off-axis optical aberrations that would be introduced throughout a 2 mm thick and 2 mm wide skin imaging volume. The MTF contrast functions and distortion plots at three different skin depths are presented.

© 2007 Optical Society of America

OCIS Codes
(080.3620) Geometric optics : Lens system design
(110.4500) Imaging systems : Optical coherence tomography
(120.3620) Instrumentation, measurement, and metrology : Lens system design
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Imaging Systems

History
Original Manuscript: October 5, 2007
Revised Manuscript: November 8, 2007
Manuscript Accepted: November 8, 2007
Published: November 15, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

Citation
S. Murali, K. S. Lee, and J. P. Rolland, "Invariant resolution dynamic focus OCM based on liquid crystal lens," Opt. Express 15, 15854-15862 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15854


Sort:  Year  |  Journal  |  Reset  

References

  1. C. A. Puliafito, M. E. Hee, J. Schuman and J. G. Fujimoto, Optical Coherence Tomography of Ocular Disease (Thorofare: Slack Inc, 1995).
  2. J. A. Izatt, "Optical coherence microscopy in scattering media," Opt. Lett. 19, 590-5911994. [CrossRef] [PubMed]
  3. J. Welzel, "Optical Coherence Tomography in dermatology: a review," Skin Res. Technol. 7, 1-9 (2001). [CrossRef]
  4. N. D. Gladkova,  et al., "In vivo optical coherence tomography imaging of human skin: norm and pathology," Skin Res. Technol. 6, 6-16 (2000). [CrossRef]
  5. M. Moncrieff, "A simple classification of the resolution and depth of imaging systems for pigmented skin lesions," Melanoma Res. 12, 155-159 (2002). [CrossRef] [PubMed]
  6. J. M. Schmitt and G. Kumar, "Turbulent nature of refractive-index variations in biological tissue," Opt. Lett. 21, 1310-1312 (1996). [CrossRef] [PubMed]
  7. C. A. Akcay, P. Parrein, and J. P. Rolland, "Estimation of longitudinal resolution in optical coherence imaging," Appl. Opt. 41, 1-7 (2002). [CrossRef]
  8. V. Mahajan, Aberration Theory Made Simple, (SPIE Press, Bellingham, WA, 1991) pp. 30-34.
  9. C. A. Akcay, E. Clarkson, and J. P. Rolland, "Effect of source spectral shape on task-based assessment of detection and resolution in optical coherence tomography," Appl. Opt. 44, 7573-7580 (2005). [CrossRef] [PubMed]
  10. J. M. Schmitt, S. L. Lee, and K. M. Yung, "An optical coherence microscope with enhanced resolving power in thick tissue," Opt. Commun. 142, 203-207 (1997). [CrossRef]
  11. J. Izatt, Personal communication (2006).
  12. B. M. Hoeling A. Fernandez, R. Haskell, E. Huang, W. Myers, D. Petersen, S. Ungersma, R.Wang, M. Williams, and S. Fraser, "An Optical coherence microscope for three dimensional imaging for developmental biology," Opt. Express 6, 136-146 (2000). [CrossRef] [PubMed]
  13. F. Lexer C. K. Hitzenberger, W. Drexler, S. Molebny, H. Sattamann, M. Sticker and A. F. Fercher, "Dynamic coherent focus OCT with depth independent transversal resolution," J. Mod. Opt. 46, 541-553 (1999).
  14. B. Qi, A. P. Himmer, L. M. Gordon, X. D. Yang, L. D. Dickensheets, and I. A. Vitkin, "Dynamic focus control in high-speed optical coherence tomography based on a microelectromechanical mirror," Opt. Commun. 232, 123-128 (2004). [CrossRef]
  15. A. Divetia, T. Shieh, J. Zhang, Z. Chen, M. Bachman and G. Li, "Dynamically focused optical coherence tomography for endoscopic applications," Appl. Phys. Lett. 86, 103902 (2005). [CrossRef]
  16. W. Drexler, U. Morgner, F. S. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999). [CrossRef]
  17. R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang and A. E. Cable, "Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm," Opt. Express 13, 10523-38 (2005). [CrossRef] [PubMed]
  18. S. Murali and J. P. Rolland, "Dynamic-focusing microscope objective for optical coherence tomography," inProceedings of the International Lens Design Conference 6342, H1-H5 (2006).
  19. H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tunability," Opt. Express 14, 11292-98 (2006). [CrossRef] [PubMed]
  20. L. G. Atkinson, S. N. Houde-Walter, D. T. Moore, D. P. Ryan, and J. M. Stagaman, "Design of a gradient-index photographic objective," Appl. Opt. 21, 993-998 (1982). [CrossRef] [PubMed]
  21. G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander and A. J. Welch, "Use of an agent to reduce scattering in skin,"Lasers Surg. Med. 24, 133-41 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited