OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 15878–15885

Coma measurement of projection optics in lithographic tools based on relative image displacements at multiple illumination settings

Qiongyan Yuan, Xiangzhao Wang, Zicheng Qiu, Fan Wang, Mingying Ma, and Le He  »View Author Affiliations


Optics Express, Vol. 15, Issue 24, pp. 15878-15885 (2007)
http://dx.doi.org/10.1364/OE.15.015878


View Full Text Article

Enhanced HTML    Acrobat PDF (513 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we propose a novel method for measuring the coma aberrations of lithographic projection optics based on relative image displacements at multiple illumination settings. The measurement accuracy of coma can be improved because the phase-shifting gratings are more sensitive to the aberrations than the binary gratings used in the TAMIS technique, and the impact of distortion on displacements of aerial image can be eliminated when the relative image displacements are measured. The PROLITH simulation results show that, the measurement accuracy of coma increases by more than 25% under conventional illumination, and the measurement accuracy of primary coma increases by more than 20% under annular illumination, compared with the TAMIS technique.

© 2007 Optical Society of America

OCIS Codes
(110.5220) Imaging systems : Photolithography
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(220.1010) Optical design and fabrication : Aberrations (global)

ToC Category:
Imaging Systems

History
Original Manuscript: July 23, 2007
Revised Manuscript: September 20, 2007
Manuscript Accepted: October 26, 2007
Published: November 15, 2007

Citation
Qiongyan Yuan, Xiangzhao Wang, Zicheng Qiu, Fan Wang, Mingying Ma, and Le He, "Coma measurement of projection optics in lithographic tools based on relative image displacements at multiple illumination settings," Opt. Express 15, 15878-15885 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-15878


Sort:  Year  |  Journal  |  Reset  

References

  1. F. Wang, X. Wang and M. Ma, "Measurement technique for in situ characterizing aberrations of projection optics in lithographic tools," Appl. Opt. 45, 6086-6093 (2006). [PubMed]
  2. M. Ma, X. Wang and F. Wang, "Aberration measurement of projection optics in lithographic tools based on two-beam interference theory," Appl. Opt. 45, 8200-8208 (2006). [CrossRef] [PubMed]
  3. P. Graeupner, R. Garreis, A. Goehnermeiter, T. Heil, M. Lowisch and D. Flagello, "Impact of wavefront errors on low k1 processes at extreme high NA," Proc. SPIE 5040, 119-130 (2003). [CrossRef]
  4. D. G. Flagello, J. Mulkens and C. Wagner, "Optical lithography into the millennium: sensitivity to aberrations, vibration and polarization," Proc. SPIE 4000, 172-183 (2000). [CrossRef]
  5. J. J. Chen, C. M. Huang, F. J. Shiu, C. S. Kuo, S. C. Fu, C. T. Ho, C. Wang and J. H. Tsai, "The influence of coma effect on scanner overlay," Proc. SPIE 4689, 280-285 (2002). [CrossRef]
  6. J. Sung, M. Pitchumani, and E. G. Johnson, "Aberration measurement of photolithographic lenses by use of hybrid diffractive photomasks," Appl. Opt. 42, 1987-1995 (2003). [CrossRef] [PubMed]
  7. T. Saito, H. Watanabe and Y. Okuda, "Evaluation of coma aberration in projection lens by various measurements," Proc. SPIE 3334, 297-308 (1998). [CrossRef]
  8. F. Wang, X. Wang, M. Ma, D. Zhang, W. Shi and J. Hu, "Aberration measurement of projection optics in lithographic tools by use of an alternating phase-shifting mask," Appl. Opt. 45, 281-287 (2006). [CrossRef] [PubMed]
  9. H. Nomura and T. Sato, "Techniques for measuring aberrations in lenses used in photolithography with printed patterns," Appl. Opt. 38, 2800-2807 (1999). [CrossRef]
  10. H. Nomura, K. Tawarayama and T. Kohno, "Aberration measurement from specific photolithographic images: a different approach," Appl. Opt. 39, 1136-1147 (2000). [CrossRef]
  11. J. P. Krik, G. Kunkel and A. K. Wong, "Aberration measurement using in situ two-beam interferometry," Proc. SPIE 4346, 8-14 (2001). [CrossRef]
  12. C. M. Garza, W. Conley, B. Roman, M. Schippers, J. Foster, J. Baselmans, K. Cummings and D. Flagello, "Ring test aberration determination & device lithography correlation" Proc. SPIE 4346, 36-44 (2001). [CrossRef]
  13. N. R. Farrar, A. L. Smith, D. Busath and D. Taitano, "In-situ measurement of lens aberrations," Proc. SPIE 4000, 18-29 (2000). [CrossRef]
  14. H. van der Laan, M. Dierichs, H. van Greevenbroek, E. McCoo, F. Stoffels, R. Pongers and R. Willekers, "Aerial image measurement methods for fast aberration set-up and illumination pupil verification," Proc. SPIE 4346, 394-407 (2001). [CrossRef]
  15. H. van der Laan and M. H. Moers, "Method of measuring aberration in an optical imaging system," U.S. patent 6,646,729 (11 November 2003).
  16. F. Wang, X. Wang, M. Ma, D. Zhang, W. Shi and J. Hu, "Coma measurement using a PSM and transmission image sensor," Optik 117, 21-25 (2006). [CrossRef]
  17. M. Born and E. Wolf, Principles of Optics, 7th edition, (Pergamon, 1999), Chap. 9.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited