OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 15898–15907

Time-domain upconversion measurements of group-velocity dispersion in quantum cascade lasers

Hyunyong Choi, Laurent Diehl, Federico Capasso, David Bour, Scott Corzine, Jintian Zhu, Gloria Höfler, and Theodore B. Norris  »View Author Affiliations

Optics Express, Vol. 15, Issue 24, pp. 15898-15907 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (3594 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A time-resolved mid-infrared upconversion technique based on sum-frequency generation was applied to measure pulse propagation in λ~5.0 µm quantum cascade lasers operated in continuous wave at 30 K. The wavelength-dependent propagation delay of femtosecond mid-infrared pulses was measured to determine the total group-velocity dispersion. The material and waveguide dispersion were calculated and their contributions to the total group-velocity dispersion were found to be relatively small and constant. The small-signal gain dispersion was estimated from a measurement of the electroluminescence spectrum without a laser cavity, and was found to be the largest component of the total GVD. A negative group-velocity dispersion of β2 (=d2β/2) approximately -4.6×10-6 ps2/µm was observed at the peak emission wavelength, and good agreement was found for the measured and calculated pulse-broadening.

© 2007 Optical Society of America

OCIS Codes
(320.7100) Ultrafast optics : Ultrafast measurements
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: October 18, 2007
Revised Manuscript: November 13, 2007
Manuscript Accepted: November 13, 2007
Published: November 15, 2007

Hyunyong Choi, Laurent Diehl, Federico Capasso, David Bour, Scott Corzine, Jintian Zhu, Gloria Hofler, and Theodore B. Norris, "Time-domain upconversion measurements of group-velocity dispersion in quantum cascade lasers," Opt. Express 15, 15898-15907 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, "Effect of gain dispersion on ultrashort pulse amplification," IEEE J. Quantum Electron. 27, 1843-1849 (1991). [CrossRef]
  2. H. A. Haus and Y. Silberberg, "Laser Mode Locking with Addition of Nonlinear Index," IEEE J. Quantum Electron. QE-22, 1048-1060 (1986).
  3. W. Lu, L. Yan, and C. R. Menyuk, "Dispersion effects in an actively mode-locked inhomogeneously broadened laser," IEEE J. Quantum Electron. QE-22, 1317-1324 (2002). [CrossRef]
  4. R. Paiella, F. Capasso, C. Gmachl, and H. Y. Hwang, D. L. Svico, A. L. Hutchinson, A. Y. Cho and H. C. Liu, "Monolithic active mode locking of quantum cascade lasers," Appl. Phys. Lett. 77, 169-171 (2000). [CrossRef]
  5. A. Soibel and F. Capasso and C. Gmachl and M. L. Peabody and A. M. Sergent and R. Paiella and H. Y. Hwang and D. L. Sivco and A. Y. Cho and H. C. Liu and C. Jirauschek and F. X. Kärtner, "Active mode locking of broadband quantum cascade lasers," IEEE J. Quantum Electron. 40, 844-851 (2004). [CrossRef]
  6. R. Paiella and F. Capasso and C. Gmachl and D. L. Svico and J. N. Bailargeon and A. L. Hutchinson and A. Y. Cho, "Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities," Science 290, 1739-1742 (2000). [CrossRef] [PubMed]
  7. C. Y. Wang and L. Diehl and A. Gordon and C. Jirauschek and F. X. K¨artner and A. Belyanin and D. Bour and S. Corzine and G. Hofler and M. Troccoli and J. Faist and F. Capasso, "Coherent instabilities in a semiconductor laser with fast gain recovery," Phys. Rev. A 75, 031802-1-031802-4 (2007). [CrossRef]
  8. D. Hofstetter and J. Faist, "Measurement of semiconductor laser gain and dispersion curves utilizing Fourier transforms of the Emission Spectra," IEEE Photon. Technol. Lett. 11, 1372-1374 (1999). [CrossRef]
  9. C. Gmachl and A. Straub and R. Colombelli and D. L. Sivco and F. Capasso and A. Y. Cho, "Minimal group refractive index dispersion and gain evolution in ultra-broad-band quantum cascade lasers," IEEE Photon. Technol. Lett. 14, 1671-1673 (2002). [CrossRef]
  10. J. Shah, "Ultrafast Luminescence Spectroscopy Using Sum Frequency Generation," IEEE J. Quantum Electron. 24, 276-288 (1988). [CrossRef]
  11. M. P. Kesler and E. P. Ippen, "Femtosecond time-domain measurements of group velocity dispersion in Al-GaAs diode lasers," Electron. Lett. 25, 640-642 (1989). [CrossRef]
  12. M. P. Kesler and E. P. Ippen, "Femtosecond time-domain measurements of group velocity dispersion in diode lasers at 1.5 μm," J. Lightwave Technol. 10, 616-619 (1992). [CrossRef]
  13. R. Gordon and A. P. Heberle and J. R. A. Cleaver, "Measuring the above-threshold group-velocity dispersion and gain curvature of a semiconductor laser by pulse-propagation techniques," J. Opt. Soc. Am. B 21, 29-35 (1994). [CrossRef]
  14. L. Diehl and D. Bour and S. Corzine and J. Zhu and G. Höfler and B. G. Lee and C. Y. Wang and M. Troccoli and F. Capasso, "Pulsed- and continuous-mode operation at high temperature of strained quantum-cascade lasers grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett. 88, 2011151-2011515 (2006). [CrossRef]
  15. L. Diehl and D. Bour and S. Corzine and J. Zhu and G. Höfler and M. Lončar and M. Troccoli and F. Capasso, "High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating continuous wave above 400 K," Appl. Phys. Lett. 88, 0411021-0411023 (2006).
  16. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).
  17. R. Maulini and M. Beck and J. Faist and E. Gini, "Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers," Appl. Phys. Lett. 84, 1659-1661 (2004). [CrossRef]
  18. A. Yariv, Quantum Electronics (WILEY, New York, 1989).
  19. A. Siegman, Lasers (University Science Books, Sausalito, California, 1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited