OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 16005–16016

2-D PSTD Simulation of optical phase conjugation for turbidity suppression

Snow H. Tseng and Changhuei Yang  »View Author Affiliations

Optics Express, Vol. 15, Issue 24, pp. 16005-16016 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (524 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Turbidity Suppression via Optical Phase Conjugation (TS-OPC) is an optical phenomenon that uses the back propagation nature of optical phase conjugate light field to undo the effect of tissue scattering. We use the computationally efficient and accurate pseudospectral time-domain (PSTD) simulation method to study this phenomenon; a key adaptation is the volumetric inversion of the optical wavefront E-field as a means for simulating a phase conjugate mirror. We simulate a number of scenarios and demonstrate that TS-OPC deteriorates with increased scattering in the medium, or increased mismatch between the random medium and the phase conjugate wave during reconstruction.

© 2007 Optical Society of America

OCIS Codes
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

ToC Category:

Original Manuscript: October 5, 2007
Revised Manuscript: November 13, 2007
Manuscript Accepted: November 13, 2007
Published: November 19, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

Snow H. Tseng and Changhuei Yang, "2-D PSTD Simulation of optical phase conjugation for turbidity suppression," Opt. Express 15, 16005-16016 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical-Properties of Biological Tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  2. A. Wax, C. H. Yang, R. R. Dasari, and M. S. Feld, "Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 26, 322-324 (2001). [CrossRef]
  3. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998). [CrossRef]
  4. J. M. Schmitt, "Optical coherence tomography (OCT): A review," IEEE J. Sel. Top. Quantum Electron. 5, 1205-1215 (1999). [CrossRef]
  5. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997). [CrossRef] [PubMed]
  6. W. Denk, J. H. Strickler, and W. W. Webb, "2-Photon Laser Scanning Fluorescence Microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  7. H. F. Zhang, K. Maslov, G. Stoica, and L. H. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nature Biotechnology 24, 848-851 (2006). [CrossRef] [PubMed]
  8. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, "Optical phase conjugation for turbidity suppression in biological samples," (in review).
  9. M. Nieto-Vesperinas, and E. Wolf, "Phase conjugation and symmetries with wave fields in free space containing evanescent components," J. Opt. Soc. Am. A 2, 1429 (1985). [CrossRef]
  10. E. N. Leith, and J. Upatnieks, "Holographic imagery through diffusing media," J. Opt. Soc. Am. 56, 523 (1966). [CrossRef]
  11. D. Boas, J. Culver, J. Stott, and A. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Opt. Express 10, 159-170 (2002). [PubMed]
  12. X. X. Guo, M. F. G. Wood, and A. Vitkin, "Monte Carlo study of pathlength distribution of polarized light in turbid media," Opt. Express 15, 1348-1360 (2007). [CrossRef] [PubMed]
  13. S. H. Tseng, and B. Huang, "Comparing Monte Carlo simulation and pseudospectral time-domain numerical solutions of Maxwell's equations of light scattering by a macroscopic random medium," Appl. Phys. Lett. 91 (2007). [CrossRef]
  14. Q. H. Liu, "Large-scale simulations of electromagnetic and acoustic measurements using the pseudospectral time-domain (PSTD) algorithm," IEEE Trans. Geosci. Remote Sens. 37, 917-926 (1999). [CrossRef]
  15. A. Taflove, and S. C. Hagness, Computational Electrodynamics: the finite-difference time-domain method (Artech House, 2000).
  16. S. D. Gedney, "An anisotropic perfectly matched layer absorbing media for the truncation of FDTD lattices," IEEE trans.Antennas Propag. 44, 1630-1639 (1996). [CrossRef]
  17. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (A Wiley-Interscience Publication, 1983).
  18. G. Mie, Ann. Phys. 25, 377 (1908). [CrossRef]
  19. I. M. Vellekoop, and A. P. Mosk, "Focusing coherent light through opaque strongly scattering media," Opt. Lett. 32, 2309-2311 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (2405 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited