OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 16035–16043

Grating-free Raman laser using highly nonlinear photonic crystal fiber

S. Randoux, N. Y. Joly, G. Mélin, A. Fleureau, L. Galkovsky, S. Lempereur, and P. Suret  »View Author Affiliations


Optics Express, Vol. 15, Issue 24, pp. 16035-16043 (2007)
http://dx.doi.org/10.1364/OE.15.016035


View Full Text Article

Enhanced HTML    Acrobat PDF (115 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a Raman laser made from a grating-free highly-nonlinear photonic crystal fiber. The laser threshold power is lower than 600 mW and laser power characteristics recorded in experiments are accurately described from the usual simplest model dealing only with stationary evolutions of total optical powers [J. Opt. Soc. Am. 69, 803–807 (1979)]. In our theoretical treatment, reflectivity coefficients are fixed parameters, in strong contrast with procedures usually implemented to describe Raman fiber lasers made with fiber Bragg gratings. Experimental investigations of the spectral properties of our grating-free Raman fiber laser evidence that the shape of the Stokes power spectrum remains remarkably Gaussian whatever the incident pump power. Increasing the incident pump power induces a drift of the Stokes wavelength together with a broadening of the Stokes optical spectrum. Investigations on the role of light polarization on laser characteristics show that our grating-free Raman fiber laser behaves as a Raman laser made with a standard polarization maintaining fiber.

© 2007 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.3550) Lasers and laser optics : Lasers, Raman
(160.4330) Materials : Nonlinear optical materials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 28, 2007
Revised Manuscript: October 3, 2007
Manuscript Accepted: October 3, 2007
Published: November 19, 2007

Citation
Stephane Randoux, Nicolas Y. Joly, G. Mélin, A. Fleureau, L. Galkovsky, S. Lempereur, and Pierre Suret, "Grating-free Raman laser using highly nonlinear photonic crystal fiber," Opt. Express 15, 16035-16043 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-16035


Sort:  Year  |  Journal  |  Reset  

References

  1. M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. J. Eggleton, "Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening," IEEE Photon. Technol. Lett. 13,1286-1288 (2001). [CrossRef]
  2. F. Vanholsbeeck, S. Coen, P. Emplit, C. Martinelli, and T. Sylvestre, "Cascaded Raman generation in optical fibers: influence of chromatic dispersion and Rayleigh backscattering," Opt. Lett. 29,998-1000 (2004). [CrossRef] [PubMed]
  3. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, "2.1 μm continuous-wave Raman laser in GeO2 fiber," Opt. Lett. 32,1848-1850 (2007). [CrossRef] [PubMed]
  4. D. A. Chestnut and J. R. Taylor, "Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figure-of-eight fiber geometries," Opt. Lett. 30,2982-2984 (2005). [CrossRef] [PubMed]
  5. P. Yan, S. Ruan, C. Guo, Y. Yu, and L. Li, "Efficient, tunable photonic crystal fiber Raman laser," Microwave Opt. Technol. Lett. 49,395-397 (2007). [CrossRef]
  6. Y. Zhao and S. D. Jackson, "Highly efficient free running cascaded Raman fiber laser that uses broadband pumping," Opt. Express 13,4731-4736 (2005). [CrossRef] [PubMed]
  7. C. A. Codemard, P. Dupriez, Y. Jeong, J. K. Sahu, M. Ibsen, and J. Nilsson, "High-power continuous-wave cladding-pumped Raman fiber laser," Opt. Lett. 31,2290-2292 (2006). [CrossRef] [PubMed]
  8. Y. Zhao and S. D. Jackson, "Highly efficient first order Raman fibre lasers using very short Ge-doped silica fibres," Opt. Commun. 253,172-176 (2005). [CrossRef]
  9. J.C. Travers, S. V. Popov, and J. R. Taylor, "Efficient continuous-wave holey fiber Raman laser," Appl. Phys. Lett. 87,031106 (2005). [CrossRef]
  10. Z. Xiong, N. Moore, Z. G. Li, and G. C. Lim, "10-W Raman Fiber Lasers at 1248 nm Using Phosphosilicate Fibers," IEEE J. Lightwave Technol. 21,2377-2381 (2003). [CrossRef]
  11. J. AuYeung and A. Yariv, "Theory of cw Raman oscillation in optical fibers," J. Opt. Soc. Am. 69,803-807 (1979). [CrossRef]
  12. S. A. Babin, D. V. Churkin, and E. V. Podivilov, "Intensity interactions in cascades of a two-stage Raman fiber laser," Opt. Commun. 226,329-335 (2003). [CrossRef]
  13. M. Krause, S. Cierullies, and H. Renner, "Stabilizing effect of line broadening in Raman fiber lasers" Opt. Commun. 227,355-361 (2003). [CrossRef]
  14. J. C. Bouteiller, "Spectral modeling of Raman fiber lasers," IEEE Photon. Technol. Lett. 15,1698-1700 (2003). [CrossRef]
  15. R. Vallée, E. Bélanger, B. Déry, M. Bernier, and D. Faucher, "Highly efficient and high-power Raman fiber laser based on broadband chirped fiber Bragg gratings," IEEE J. Lightwave Technol. 24,5039-5042 (2006). [CrossRef]
  16. P. Suret and S. Randoux, "Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about the validity of usual models," Opt. Commun. 237,201-212 (2004). [CrossRef]
  17. R. H. Stolen, "Polarization effects in fiber Raman and Brillouin lasers," IEEE J. Quantum Electron. QE-15,1157-1160 (1979). [CrossRef]
  18. S. Randoux, A. Doutté, and P. Suret, "Polarization-resolved analysis of the characteristics of a Raman laser made with a polarization maintaining fiber," Opt. Commun. 260,232-241 (2006). [CrossRef]
  19. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Spectral broadening in Raman fiber lasers," Opt. Lett. 31,3007-3009 (2006). [CrossRef] [PubMed]
  20. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser," J. Opt. Soc. Am. B 24,1729-1738 (2007). [CrossRef]
  21. R. H. Stolen, C. Lee, and R. K. Jain, "Development of the stimulated Raman spectrum in single-mode silica fibers," J. Opt. Soc. Am. B 1,652-657 (1984). [CrossRef]
  22. A. Doutté, P. Suret, and S. Randoux, "Influence of light polarization on dynamics of continuous-wave-pumped Raman fiber lasers," Opt. Lett. 28,2464-2466 (2003). [CrossRef]
  23. S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gaspontsev, "High-Power CW Linearly Polarized All-Fiber Raman Laser," IEEE Photon. Technol. Lett. 16,1014-1016 (2004). [CrossRef]
  24. L. Labonté, D. Pagnoux, P. Roy, F. Bahloul, and M. Zghal, "Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres," Opt. Commun. 262,180-187 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited