OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 16177–16188

Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements

Silvestre Manzanera, Pedro M. Prieto, Diego B. Ayala, Joseph M. Lindacher, and Pablo Artal  »View Author Affiliations

Optics Express, Vol. 15, Issue 24, pp. 16177-16188 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (425 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The concept of Adaptive Optics Visual Simulation applies to the use of an Adaptive Optics system to manipulate ocular aberrations in order to perform visual testing through a modified optics. It can be of interest both to study the visual system and to design new ophthalmic optical elements. In this work, we describe an apparatus based on a liquid crystal programmable phase modulator and explore its capabilities as a tool in the early stages of the design of ophthalmic optical elements with increased depth of field for presbyopic subjects. To illustrate the potential of the instrument, we analyze the performance of two phase profiles obtained by a hybrid optimization procedure. The liquid crystal Adaptive Optics Visual Simulator can be used to experimentally record the point spread function for different vergences in order to objectively measure depth of focus, to perform different psychophysical experiments through the phase profile in order to measure its impact on visual performance, and to study the interaction with the eye’s particular aberrations. This approach could save several steps in current procedures of ophthalmic optical design and eventually lead to improved solutions.

© 2007 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics
(330.5510) Vision, color, and visual optics : Psychophysics

ToC Category:
Adaptive Optics

Original Manuscript: September 24, 2007
Revised Manuscript: November 15, 2007
Manuscript Accepted: November 19, 2007
Published: November 21, 2007

Virtual Issues
Vol. 2, Iss. 12 Virtual Journal for Biomedical Optics

Silvestre Manzanera, Pedro M. Prieto, Diego B. Ayala, Joseph M. Lindacher, and Pablo Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. A. W. Dreher, J. F. Bille, R. N. Weinreb, "Active optical depth resolution improvement of the laser tomographic scanner," Appl. Opt. 28, 804-808 (1989). [CrossRef] [PubMed]
  2. P. Artal, R. Navarro, "High-resolution imaging of the living human fovea: measurement of the intercenter cone distance by speckle interferometry," Opt. Lett. 14, 1098-1100 (1989). [CrossRef] [PubMed]
  3. LiangJ. , WilliamsD. R. , MillerD. T. , "Supernormal vision and high-resolution retinal imaging through adaptive optics," J. Opt. Soc. Am. A 14, 2884-2892 (1997). [CrossRef]
  4. F. Vargas-Martín, P. M. Prieto, P. Artal, "Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998). [CrossRef]
  5. E. J. Fernández, I. Iglesias, P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001). [CrossRef]
  6. H. Hofer, L. Chen, G. Y. Yoon, B. Singer, Y. Yamauchi, D. R. Williams, "Improvement in retinal image quality with dynamic correction of the eye's aberrations," Opt. Express 8, 631-643 (2001). [CrossRef] [PubMed]
  7. P. J. W. Hands, S. A. Tatarkova, A. K. Kirby, G. D. Love, "Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells," Opt. Express 14, 4525-4537 (2006). [CrossRef] [PubMed]
  8. T. R. M. Sales, G. M. Morris, "Axial superresolution with phase-only pupil filters," Opt. Commun. 156, 227-230 (1998). [CrossRef]
  9. M. Martinez-Corral, M. T. Caballero, E. H. K. Stelzer, J. Swoger, "Tailoring the axial shape of the point spread function using the Toraldo concept," Opt. Express 10, 98-103 (2002). [PubMed]
  10. M. P. Cagigal, J. E. Oti, V. F. Canales, P. J. Valle, "Analytical design of superresolving phase filters," Opt. Commun. 241, 249-253 (2004). [CrossRef]
  11. E. J. Fernandez, S. Manzanera, P. Piers, P. Artal, "Adaptive optics visual simulator," J. Refrac. Surg. 18, S634-S638 (2002).
  12. P. Artal, L. Chen, E. J. Fernandez, B. Singer, S. Manzanera, D. R. Williams, "Neural compensation for the eye's optical aberrations," J. Vision 4, 281-287 (2004). [CrossRef]
  13. P. A. Piers, E. J. Fernández, S. Manzanera, S. Norrby, P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Vis. Sci. 45, 4601-4610 (2004) [CrossRef] [PubMed]
  14. P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, P. Artal, "The use of adaptive optics to determine the optimal ocular spherical aberration," J. Cataract Refr. Sur. 33, 1721-1726 (2007). [CrossRef]
  15. L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, P. Artal, "Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye," Opt. Express 15, 12654-12661 (2007). [CrossRef] [PubMed]
  16. P. M. Prieto, E. J. Fernandez, S. Manzanera, P. Artal, "Adaptive optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004). [CrossRef] [PubMed]
  17. E. J. Fernandez, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005). [CrossRef] [PubMed]
  18. P. M. Prieto, F. Vargas-Martin, J. S. McLellan, S. A. Burns, "Effect of the polarization on ocular wave aberration measurements," J. Opt. Soc. Am. A 19, 809-814 (2002). [CrossRef]
  19. D. Miller, L. Thibos, X. Hong, "Requirements for segmented correctors for diffraction-limited performance in the human eye," Opt. Express 13, 275-289 (2005). [CrossRef] [PubMed]
  20. P. M. Prieto, F. Vargas-Martin, S. Goelz, P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000). [CrossRef]
  21. A. B. Djurisic, J. M. Elazar, A. D. Rakic, "Simulated-annealing-based genetic algorithm for modeling the optical constants of solids," Appl. Opt. 36, 7097-7103 (1997). [CrossRef]
  22. G. Zhou, Y. Chen, Z. Wang, H. Song, "Genetic local search algorithm for optimization design of diffractive optical elements," Appl. Opt. 38, 4281-4290 (1999). [CrossRef]
  23. D. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters," J. Soc. Ind. Appl. Math. 11, 431-441 (1963). [CrossRef]
  24. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, S. Marcos, "Aberrations of the human eye in visible and near infrared illumination," Optom. Vision Sci. 80, 26-35 (2003). [CrossRef]
  25. E. J. Fernandez, A. Unterhuber, P. M. Prieto, B. Hermann, W. Drexler, P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited