OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 16230–16244

Models of dielectric response in disordered solids

Daniel Franta, David Nečas, and Lenka Zajíčková  »View Author Affiliations

Optics Express, Vol. 15, Issue 24, pp. 16230-16244 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (330 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two dispersion models of disordered solids, one parameterizing density of states (PDOS) and the other parameterizing joint density of states (PJDOS), are presented. Using these models, not only the complex dielectric function of the materials, but also some information about their electronic structure can be obtained. The numerical integration is necessary in the PDOS model. If analytical expressions are required the presented PJDOS model is, for some materials, a suitable option still providing information about the electronic structure of the material. It is demonstrated that the PDOS model can be successfully applied to a wide variety of materials. In this paper, its application to diamond-like carbon (DLC), a-Si and SiO2-like materials are discussed in detail. Unlike the PDOS model, the presented PJDOS model represents a special case of parameterization that can be applied to limited types of materials, for example DLC, ultrananocrystalline diamond (UNCD) and SiO2-like.

© 2007 Optical Society of America

OCIS Codes
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(160.2750) Materials : Glass and other amorphous materials
(260.2030) Physical optics : Dispersion

ToC Category:
Physical Optics

Original Manuscript: October 17, 2007
Revised Manuscript: November 20, 2007
Manuscript Accepted: November 20, 2007
Published: November 21, 2007

Daniel Franta, David Nečas, and Lenka Zajíčková, "Models of dielectric response in disordered solids," Opt. Express 15, 16230-16244 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. A. R. Forouhi and I. Bloomer, "Optical dispersion relations for amorphous semiconductors and amorphous dielectrics," Phys. Rev. B 34, 7018-7026 (1986). [CrossRef]
  2. G. E. Jellison and F. A. Modine, "Parameterization of the optical functions of amorphous materials in the interband region," Appl. Phys. Lett. 69, 371-373 (1996). [CrossRef]
  3. A. S. Ferlauto, G. M. Ferreira, J. M. Pearce, C. R. Wronski, R. W. Collins, X. M. Deng, and G. Ganguly, "Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film photovoltaics," J. Appl. Phys. 92, 2424-2436 (2002). [CrossRef]
  4. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1971).
  5. J. Tauc, "Optical Properties of Non-Crystaline Solids," in Optical Properties of Solids, F. Abel`es, ed., pp. 277-313 (North-Holland, Amsterdam, 1972).
  6. S. Adachi, Optical Properties of Crystaline and Amorphous Semiconductors: Matrials and Fundamental Principles (Kluwer, Boston, 1999). [CrossRef] [PubMed]
  7. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 2001).
  8. F. Wooten, Optical Properties of Solids (Academic Press, New York, 1972).
  9. D. Franta, I. Ohlýdal, M. Frumar, and J. Jedelský, "Expression of the Optical Constants of Chalcogenide Thin Films Using the New Parameterization Dispersion Model," Appl. Surf. Sci. 212-213, 116-121 (2003). [CrossRef]
  10. D. Franta, I. Ohlýdal, P. Klapetek, and P. Roca i Cabarrocas, "Complete Characterization of Rough Polymorphous Silicon Films by Atomic Force Microscopy and the Combined Method of Spectroscopic Ellipsometry and Spectroscopic Reflectometry," Thin Solid Films 455-456, 399-403 (2004). [CrossRef]
  11. L. Zajý¡cková, V . Bur¡sýková, D . Franta, A.  Bousquet, A.  Granier, A.  Goullet, and J. Bur¡sýk, "Comparative Study of Films Deposited from HMDSO/O2 in Continuous Wave and Pulsed rf Discharges," Plasma Process. Polym. 4, S287-S293 (2007). [CrossRef]
  12. D. Franta, L. Zajý¡cková, V. Bur¡sýková, and I. Ohlýdal, "New Dispersion Model of the Optical Constants of the DLC Films," Acta Phys. Slov.  53, 373-384 (2003).
  13. D. Franta, I. Ohlýdal, V. Burýková, and L. Zajý¡cková, "Optical properties of diamond-like carbon films containing SiOx," Diamond Relat. Mater. 12, 1532-1538 (2003). [CrossRef]
  14. D. Franta, I. Ohlýdal, V. Burýková, and L.  Zajý¡cková, "Optical Properties of Diamond-Like Carbon Films Containing SiOx Studied by the Combined Method of Spectroscopic Ellipsometry and Spectroscopic Reflectometry," Thin Solid Films 455-456, 393-398 (2004). [CrossRef]
  15. D. Franta, V. Burýková, I. Ohlýdal, L. Zajý¡cková, and P. Stáhel, "Thermal stability of the optical properties of plasma deposited diamond-like carbon thin films," Diamond Relat. Mater. 14, 1795-1798 (2005). [CrossRef]
  16. D. Franta, V. Burýková, I. Ohlýdal, P. Stáhel, M. Ohlýdal, and D. Ne¡cas, "Correlation of thermal stability of the mechanical and optical properties of diamond-like carbon films," Diamond Relat. Mater. 16, 1331-1335 (2007). [CrossRef]
  17. D. Franta, V. Burýková, D. Ne¡cas, and L. Zajý¡cková, "Modeling of optical constants of diamond-like carbon," Diamond Relat. Mater. (submitted for publication).
  18. D. Franta, M. Hrdli¡cka, D. Ne¡cas, M. Frumar, I. Ohlýdal, and M. Pavli¡sta, "Optical characterization of phase changing Ge2Sb2Te5 chalcogenide films," Phys. Status Solidi A-Appl. Mat. (to be published).
  19. D. C. Ingram, J. A. Woollam, and G. Bu-Abbud, "Mass density and hydrogen concentration in diamond-like carbon films: proton recoil, rutherford backscattering and ellipsometric analysis," Thin Solid Films 137, 225-230 (1986). [CrossRef]
  20. F. Demichelis, C. F. Pirri, and A. Tagliaferro, "Evaluation of the [C(sp3)]/[C(sp2)] ratio in diamondlike films through the use of a complex dielectric constant," Phys. Rev. B 45, 14,364-14,370 (1992). [CrossRef]
  21. D. Wood and J. Tauc, "Weak Absorption Tails in Amorphous Semiconductors," Phys. Rev. B 5, 3144-3151 (1972). [CrossRef]
  22. D. Franta and I. Ohlýdal, "Ellipsometric Parameters and Reflectances of Thin Films with Slightly Rough Boundaries," J. Mod. Opt. 45, 903-934 (1998). [CrossRef]
  23. L. Pajasov’a, "Optical properties of GeO2 in the ultraviolet region," Czech. J. Phys. 19, 1265-1270 (1969). [CrossRef]
  24. H. R. Philipp, "Silicon Dioxide (SiO2) (Glass)," in Handbook of Optical Constants of Solids, E. Palik, ed., vol. I, pp. 749-763 (Academic Press, New York, 1985). [CrossRef]
  25. L. A. J. Garvie, P. Rez, J. R. Alvarez, and P. R. Buseck, "Interband transitions of crystalline and amorphous SiO2: An electron energy-loss spectroscopy (EELS) study of the low-loss region," Solid State Commun. 106(5), 303-307 (1998). [CrossRef]
  26. D. Franta, L. Zaj ¡cková, M. Karásková, O. Ja¡sek, D. Ne¡cas, P. Klapetek, and M. Valtr, "Optical Characterization of Ultrananocrystalline Diamond Films," Diamond Relat. Mater. (submitted for publication).
  27. M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi, GNU Scientific Library Reference Manual, 2nd ed. (Network Theory Limited, Bristol, 2005).
  28. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, 1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited