OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 16245–16254

Design of resonant microcavities: application to optical gyroscopes

Satoshi Sunada and Takahisa Harayama  »View Author Affiliations


Optics Express, Vol. 15, Issue 24, pp. 16245-16254 (2007)
http://dx.doi.org/10.1364/OE.15.016245


View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study theoretically and numerically the effect of rotation on resonant frequencies of microcavities in a rotating frame of reference. Cavity rotation causes the shifts of the resonant frequencies proportional to the rotation rate if it is larger than a certain value. Below the value, a region of rotation rate exists where there is no resulting the frequency shifts proportional to the rotation rate. We show that designing cavity symmetry as C nv (n≥3) can eliminate this region.

© 2007 Optical Society of America

OCIS Codes
(140.3370) Lasers and laser optics : Laser gyroscopes
(140.3410) Lasers and laser optics : Laser resonators
(140.4780) Lasers and laser optics : Optical resonators
(350.5720) Other areas of optics : Relativity

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 6, 2007
Revised Manuscript: November 18, 2007
Manuscript Accepted: November 18, 2007
Published: November 21, 2007

Citation
Satoshi Sunada and Takahisa Harayama, "Design of resonant microcavities: application to optical gyroscopes," Opt. Express 15, 16245-16254 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-16245


Sort:  Year  |  Journal  |  Reset  

References

  1. E. J. Post, "Sagnac effect," Rev. Mod. Phys. 39, 475-493 (1967). [CrossRef]
  2. W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, "The ring laser gyro," Rev. Mod. Phys. 57, 61-104 (1985). [CrossRef]
  3. F. Aronowitz, in Laser Applications, M. Ross, ed. (Academic, New York, 1971), Vol. 1, pp 133-200.
  4. L. N. Menegozzi and W. E. Lamb, Jr., "Theory of a ring laser," Phys. Rev. A 8, 2103-2125 (1971). [CrossRef]
  5. A. Kuriyagawa and S. Mori, "Ring laser and ring interferometer in accelerated systems," Phys. Rev. D 20, 1290-1293 (1979). [CrossRef]
  6. H. J. Arditty and H. C. Lefevre, "Sagnac effect in fiber gyroscopes," Opt. Lett. 6, 401-403 (1981). [CrossRef] [PubMed]
  7. W. M. Macek and D. T. M. Davis, "Rotation rate sensing with traveling-wave ring lasers," Appl. Phys. Lett. 2, 67-68 (1963). [CrossRef]
  8. J. L. Anderson and J. W. Ryon, "Electromagnetic radiation in accelerated systems," Phys. Rev. 181, 1765-1774 (1969). [CrossRef]
  9. E. Landau and E. Lifshits, The Classical Theory of Fields (Butterworth-Heinemann. Oxford, 1975).
  10. C. V. Heer, "Resonant frequencies of an electromagnetic cavity in an accelerated system of reference," Phys. Rev. 134, A799-804 (1964). [CrossRef]
  11. Y. Yamamoto and R. E. Slusher, "Optical processes in microcavities," Phys. Today 46, 66-73 (1993).
  12. R. K. Chang and A. J. Campillo, eds., Optical processes in microcavities (World Scientific Publishing, Singapore, New Jersey, Hong Kong, 1996). [CrossRef]
  13. <other>13. S. Sunada and T. Harayama, "Sagnac effect in resonant microcavities," Phys. Rev. A 74, 021801(R) (2006);T. Harayama, S. Sunada, and T. Miyasaka, "Wave chaos in rotating optical cavities," Phys. Rev. E 76, 016212 (2007).</other> [CrossRef]
  14. Equation (7) agrees with a conventional expression for frequency difference: (4A⌉)/(cnP)∧ by applying assumptions (i) and (ii) to Eq. (7). In the above, A is the area bounded by the optical path, P is the perimeter of the optical path, and ⌉is the eigen frequency of the non-rotating ring cavity approximated as ⌉¡Ö c(k1 +k2)/2.
  15. Here,CW - (CCW-) rotating waves mean those having mostly negative (positive) angular momentum components, as in the definition of Eq. (23) in Ref. [13].
  16. R. J. C. Spreeuw, R. Centeno Neelen, N. J. van Druten, E. R. Eliel, and J. P. Woerdman, "Mode coupling in a He-Ne ring laser with backscattering," Phys. Rev. A 42, 4315-4324 (1990). [CrossRef] [PubMed]
  17. G. Hackenbroich, E. Narimanov, and A. D. Stone, "Quantum perturbation theory for the level splitting in billiards," Phys. Rev. E 57, R5-R8 (1998). [CrossRef]
  18. M. Choi, T. Fukushima, and T. Harayama, "Alternative osicillation with □ difference in quasi-stadium laser diodes," in CLEO/Pacific Rim 2007, WGI-3 (2007).
  19. Morton Hamermesh, Group Theory and Its Application to Physical Problems, (Dover New York, 1989).
  20. S. Sakanaka, "Classification of eigenmodes in rf-cavities using the group theory," Phys. Rev. ST Accel. Beams 8, 072002 (2005). [CrossRef]
  21. M. Sorel, P. J. Laybourn, G. Giuliani, and S. Donati, "Progress on the GaAlAs ring laser gyroscope," Alta Frequenza, Rivista Di Electonica,  1045-48, (1998);M. Sorel, G. Giuliani, A. Scire, R. Miglierina, S. Donati, and P. J. R. Laybourn, "Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model," IEEE J. Quantum Electron. 39, 1187-1195 (2003).
  22. H. Cao, C. Liu, H. Ling, H. Deug, M. Benavidez, G. M. Peake, G. A. Smolyakov, P. G. Eliseev, and M. Osinski, "Frequency beating between monolithically integrated semiconductor ring lasers," Appl. Phys. Lett. 86, 041101 (2005). [CrossRef]
  23. F. C. Rarnberg, R. Johnson, W. Ellerbusch, B. Schermer, and R. Gopinath, "Cavity element for resonant micro optical gyroscope," IEEE Trans. Aerosp. Electron. Syst. 15, 33-36 (2000). [CrossRef]
  24. M. N. Armenise, V. M. N. Passaro, F. Leonardis, and M. Armenise, " Modeling and design of a novel miniaturized integrated optical sensor for gyroscope systems," J. Lightwave Technol. 19, 1476 (2001). [CrossRef]
  25. Ben Zion Steinberg, "Rotating photonic crystals: a medium for compact optical gyroscopes," Phys. Rev. E 71, 056621, (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited