OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 24 — Nov. 26, 2007
  • pp: 16270–16278

Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers

X. Zhang, R. Wang, F. M. Cox, B.T. Kuhlmey, and M. C. J. Large  »View Author Affiliations

Optics Express, Vol. 15, Issue 24, pp. 16270-16278 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (788 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An interesting feature of microstructured optical fibers (MOFs) is that their properties can be adjusted by filling or coating of the holes. Some applications require selective filling or coating, which has proved experimentally demanding. We demonstrate selective coating of MOFs with metal and use it to fabricate an in-fiber absorptive polarizer.

© 2007 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2340) Fiber optics and optical communications : Fiber optics components
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 25, 2007
Revised Manuscript: October 9, 2007
Manuscript Accepted: November 19, 2007
Published: November 21, 2007

X. Zhang, R. Wang, F. M. Cox, B. T. Kuhlmey, and M. C. J. Large, "Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizers," Opt. Express 15, 16270-16278 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, "Tunable photonic band gap fiber," in OSA Trends in Optics and Photonics (TOPS) 70, Optical Fiber Communication Conference Technical Digest, Postconference Edition (Optical Society of America, Washington, DC, 2002), 466-468 (2002).
  2. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber," Opt. Lett. 27, 842-844 (2002). [CrossRef]
  3. N. Litchinitser, S. Dunn, P. Steinvurzel, B. Eggleton, T. White, R. McPhedran, and C. M. de Sterke, "Application of an ARROW model for designing tunable photonic devices," Opt. Express 12, 1540-1550 (2004). [CrossRef] [PubMed]
  4. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001). [CrossRef] [PubMed]
  5. K. M. Gundu, M. Kolesik, J. V. Moloney and K. S. Lee, "Ultra-flattened-dispersion selectively liquid-filled photonic crystal fibers", Opt. Express 14, 6871-6878 (2006). [CrossRef]
  6. B. T. Kuhlmey,K. Pathmanandavel, and R. C. McPhedran, "Multipole analysis of photonic crystal fibers with coated inclusions," Opt. Express 14, 10851-10864 (2006). [CrossRef] [PubMed]
  7. A. Hassani and M. Skorobogatiy, "Design of microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfuidics", Opt. Express 14, 11616-1162 (2006). [CrossRef] [PubMed]
  8. A. Hassani and M. Skorobogatiy, "Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors," J. Opt. Soc. Am. B 24, 1423-1429 (2007). [CrossRef]
  9. Y. Huang, Y. Xu and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004). [CrossRef]
  10. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev and T. P Hansen, "Selective filling of photonic crystal fibres", J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005). [CrossRef]
  11. L. Xiao, W. Jin, M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer", Opt. Express 13, 9014-9022 (2005). [CrossRef] [PubMed]
  12. C. M. B. Cordeiro, E. M. dos Santos, and C. H. Brito Cruz, C. J. S. de Matos and D. S. Ferreira, "Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications", Opt. Express 14, 8403-8412 (2006). [CrossRef] [PubMed]
  13. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J.-L Auguste, and J-M. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005). [CrossRef] [PubMed]
  14. F. Intonti,_ S. Vignolini, V. Türck, and M. Colocci, P. Bettotti and L. Pavesi, S. L. Schweizer and R. Wehrspohn and D. Wiersma, "Rewritable photonic circuits", Appl. Phys. Lett. 89, 211117 (2006). [CrossRef]
  15. M. Sasaki, T. Ando, S. Nogawa and K. Hane, "Direct photolithogprahy on optical fiber end," Jpn. J. Appl. Phys. 41, 4350-4355 (2002). [CrossRef]
  16. W. J. Wadsworth, J. C. Knight, W. H. Reeves, and P. St. J. Russell, "Yb3+-doped photonic crystal fiber laser," Electron. Lett. 36, 1452-1453 (2000). [CrossRef]
  17. A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. S. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005). [CrossRef] [PubMed]
  18. A. Cerqueira S. Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, "Hybrid photonic crystal fiber," Opt. Express 14, 926-931 (2006). [CrossRef] [PubMed]
  19. T. Larsen, A. Bjarklev, D. Hermann, and J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres," Opt. Express 11, 2589-2596 (2003). [CrossRef] [PubMed]
  20. P. J. A. Sazio, A Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D-J Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science,  311, 1583-1586 (2006). [CrossRef] [PubMed]
  21. E. T. Eisenbraun, A. Klaver, Z. Patel, G. Nuesca,and Al. E.  Kaloyeros, "Low temperature metalorganic chemical vapor deposition of conformal silver coatings for applications in high aspect ratio structures", J. Vac. Sci. Technol. B 19, 585-588 (2001). [CrossRef]
  22. R. L. Puurunen, Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process, J. App. Phys. 97, 121301-121352 (2005). [CrossRef]
  23. G.  Vienne, M.  Yan, T.  Luo, T. K.  Liang, P.  Ho, and C.  Lin, "Liquid core fibers based on hollow core microstructured fibers," in Proceedings of IEE conference on lasers and electrooptics/Pacific Rim (Institute of Electrical and Electronics Engineers, Tokyo, 2005), 551-552 (2005). [CrossRef]
  24. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006). [CrossRef] [PubMed]
  25. A. Witkowska, K. Lai, S. G. Leon-Saval, W. J. Wadsworth, and T. A. Birks, "All-fiber anamorphic core-shape transitions," Opt. Lett. 31, 2672-2674 (2006). [CrossRef] [PubMed]
  26. C. D. Rabii,.  et al, "Processing and characterization of silver films used to fabricate hollow glass waveguides" Appl. Opt. 38, 4486-4493 (1999). [CrossRef]
  27. T. P. White,, "Multipole method for microstructured optical fibers I : formulation" J. Opt. Soc. Am. B 19, 2322-2330 (2002). [CrossRef]
  28. B. T. Kuhlmey,  et al, "Multipole method for microstructured optical fibers II : implementation and results" J. Opt. Soc. B. 19, 2331-2340 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited