OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16342–16347

Polarisation-mode coupling in (100)-cut Nd:YAG

Aaron McKay, Judith M. Dawes, and Jong-Dae Park  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 16342-16347 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (204 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the polarisation-mode dynamics and Lamb’s mode coupling constant for orthogonally polarised laser states in a dual-mode (100)-cut Nd:YAG laser with feedback, and compare with an anisotropic rate equation model. The anisotropic (100)-cut Nd:YAG exhibits thermally-induced depolarisation and polarisation-mode coupling dependent on the pump polarisation, crystal angle and laser polarisation directions. Here, the links between the depolarisation and polarisation-mode coupling are discussed with reference to a rate equation model which includes gain anisotropy in a quasi-isotropic laser cavity.

© 2007 Optical Society of America

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3580) Lasers and laser optics : Lasers, solid-state

ToC Category:
Lasers and Laser Optics

Original Manuscript: September 24, 2007
Revised Manuscript: November 12, 2007
Manuscript Accepted: November 14, 2007
Published: November 26, 2007

Aaron McKay, Judith M. Dawes, and Jong-Dae Park, "Polarisation-mode coupling in (100)-cut Nd:YAG," Opt. Express 15, 16342-16347 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. L. Tang, H. Statz, and G. deMars, "Spectral output and spiking behavor of solid-state lasers," J. Appl. Phys. 34, 2289-2295 (1963). [CrossRef]
  2. K. Otsuka, P. Mandel, S. Bielawski, D. Derozier, and P. Glorieux, "Alternate time scale in multimode lasers," Phys. Rev. A 46, 1692-1696 (1992). [CrossRef] [PubMed]
  3. M. Brunel, A. Amon, and M. Vallet, "Dual-polarization microchip laser at 1.53 m," Opt. Lett. 30, 2418-2420 (2005). [CrossRef] [PubMed]
  4. L. Morvan, N. D. Lai, D. Dolfi, J.-P. Huignard, M. Brunel, F. Bretenaker, and A. Le Floch, "Building blocks for a two-frequency laser lidar-radar: a preliminary study," Appl. Opt. 41, 5702-5712 (2002). [CrossRef] [PubMed]
  5. W. Du, S. Zhang, and Y. Li, "Principles and realization of a novel instrument for high performance displacement measurement—nanometer laser ruler," Opt. Laser Eng. 43, 1214-1225 (2005). [CrossRef]
  6. M. Brunel, O. Emile, F. Bretenaker, A. Le Floch, B. Ferrand, and E. Molva, "Tunable two-frequency lasers for lifetime measurements," Opt. Rev. 4, 550-552 (1997). [CrossRef]
  7. M. Alouini, F. Bretenaker, M. Brunel, A. Le Floch, M. Vallet, and P. Thony, "Existence of two coupling constants in microchip lasers," Opt. Lett. 25, 896-898 (2000). [CrossRef]
  8. W. E. Lamb, "Theory of an optical maser," Phys. Rev. A 134, A1429-A1450 (1964).
  9. R. Bayerer, J. Heber, and D. Mateika, "Crystal-field analysis of Tb3+ doped Yttrium aluminium garnet using site-selective polarized spectroscopy," Z. Phys. B Con. Mat. 64, 201-210 (1986). [CrossRef]
  10. R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser— Part II: Comparison of Theory and Experiment," IEEE J. Quantum Electron. 34, 1493-1502 (1998). [CrossRef]
  11. R. Dalgliesh, A. D. May, and G. Stephan, "Polarization states of a single-mode (microchip) Nd3+:YAG laser— Part I: Theory," IEEE J. Quantum Electron. 34, 1485-1492 (1998). [CrossRef]
  12. A. McKay, P. Dekker, D.W. Coutts, and J. M. Dawes, "Enhanced self-heterodyne performance using a Nd-doped ceramic YAG laser," Opt. Commun. 272, 425-430 (2007). [CrossRef]
  13. G.W. Baxter, J.M. Dawes, P. Dekker, and D. S. Knowles, "Dual-polarization frequency-modulated laser source," IEEE Photon Technol. Lett. 8, 1015-1017 (1996). [CrossRef]
  14. M. Brunel, M. Vallet, A. Le Floch, and F. Bretenaker, "Differential measurement of the coupling constant between laser eigenstates," Appl. Phys. Lett. 70, 2070-2072 (1997). [CrossRef]
  15. M. A. van Eijkelenborg, C. A. Scharama, and J. P. Woerdman, "Quantum mechanical diffusion of the polarization of a laser," Opt. Commun. 119, 97-103 (1995). [CrossRef]
  16. W. KoechnerSolid-state laser engineering (Springer, 1999).
  17. G. Verschaffelt, G. van der Sande, J. Danckaert, T. Erneux, B. Ségard, and P. Glorieux, "Polarization switching in Nd:YAG lasers by means of modulating the pump polarization," Proc. SPIE 6184, 61841V-1-61841V-9 (2006).
  18. I. Shoji and T. Taira, "Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal," Appl. Phys. Lett. 80, 3048-3050 (2002). [CrossRef]
  19. I. B. Mukhin, O. V. Palashov, E. A. Khazanov, and I. A. Ivanov, "Influence of the orientation of a crystal on thermal polarization effects in high-power solid-state lasers," JETP Lett. V81, 90-94 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited