OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16376–16389

Efficient waveguide-integrated tunnel junction detectors at 1.6 µm

Philip C. D. Hobbs, Robert B. Laibowitz, Frank R Libsch, Nancy C. LaBianca, and Punit P. Chiniwalla  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 16376-16389 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (504 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Near-infrared detectors based on metal-insulator-metal tunnel junctions integrated with planarized silicon nanowire waveguides are presented, which we believe to be the first of their kind. The junction is coupled to the waveguide via a thin-film metal antenna feeding a plasmonic travelling wave structure that includes the tunnel junction. These devices are inherently broadband; the design presented here operates throughout the 1500–1700 nm region. Careful design of the antenna and travelling wave region substantially eliminates losses due to poor mode matching and RC rolloff, allowing efficient operation. The antennas are made from multilayer stacks of gold and nickel, and the active devices are Ni-NiO-Ni edge junctions. The waveguides are made via shallow trench isolation technology, resulting in a planar oxide surface with the waveguides buried a few nanometres beneath. The antennas are fabricated using directional deposition through a suspended Ge shadow mask, using a single level of electron-beam lithography. The waveguides are patterned with conventional 248-nm optical lithography and reactive-ion etching, then planarized using shallow-trench isolation technology. We also present measurements showing overall quantum efficiencies of 6% (responsivity 0.08 A/W at 1.605 µm), thus demonstrating that the previously very low overall quantum efficiencies reported for antenna-coupled tunnel junction devices are due to poor electromagnetic coupling and poor choices of antenna metal, not to any inherent limitations of the technology.

© 2007 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(040.5570) Detectors : Quantum detectors
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(240.7040) Optics at surfaces : Tunneling

ToC Category:

Original Manuscript: June 14, 2007
Revised Manuscript: September 21, 2007
Manuscript Accepted: September 23, 2007
Published: November 26, 2007

Philip C. D. Hobbs, Robert B. Laibowitz, Frank R. Libsch, Nancy C. LaBianca, and Punit P. Chiniwalla, "Efficient waveguide-integrated tunnel junction detectors at 1.6 μm," Opt. Express 15, 16376-16389 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J.W. Dees, "Detection and harmonic generation in the sub-millimeter wavelength region," Microwave J. 9, 48-55, 1966.
  2. V. Daneu, D. Sokoloff, A. Sanchez, and A. Javan, "Extension of laser harmonic-frequency mixing techniques into the 9 μ region with an infrared metal-metal point contact diode," Appl. Phys. Lett. 15 (12), 398-401 (1969) [CrossRef]
  3. A. Sanchez, C. F. Davis, Jr., K. C. Liu, and A. Javan "The MOM tunneling diode: Theoretical estimate of its performance at microwave and infrared frequencies," J. Appl. Phys. 49, 5270-5277 (1978) [CrossRef]
  4. M. Nagae, "Response time of metal-insulator-metal tunnel junctions," Japan. J. Appl. Phys. 11, 1611-1621 (1972) [CrossRef]
  5. J. C. Martinez, and E. Polatdemir, "Measurement of tunneling time via electron interferometry," Appl. Phys. Lett. 84, 1320-1322 (2004) [CrossRef]
  6. C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, B. Lipphardt, and C. O. Weiss, "Mixing of 28 THz (10.7 μm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz," Infrared Phys. Technol. 38, 393-396 (1997) [CrossRef]
  7. S. Y. Wang, T. Izawa, T. K. Gustafson, "Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 μm," Appl. Phys. Lett. 27(9), 481-483 (1975) [CrossRef]
  8. I. Wilke, W. Herrmann, and F. K. Kneubuehl, "Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation," Appl. Phys. B 58, 87-95 (1994)
  9. M. Abdel-Rahman, F. J. Gonzalez, G. Zummo, C. Middleton and G. D. Boreman, "Antenna-coupled MOM diodes for dual-band detection in MMW and LWIR," in Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, R. Trebits, J. L. Kurtz, R. Appleby, N. Salmon, D. A. Wikner, Proc. SPIE 5410, 238-243 (2004)
  10. B. M. Kale, " Electron tunneling devices in optics," Opt. Eng. 24 (2), 267-274 (1985)
  11. G. D. Boreman, A. Dogariu, C. C. Christodoulou, D. Kotter "Dipole-on-dielectric model for infrared lithographic spiral antennas," Opt. Lett. 21, 309-311 (1996) [CrossRef]
  12. G. D. Boreman, C. Fumeaux, W. Herrmann, F. K. Kneubuehl, H. Rothuizen, "Tunable polarization response of a planar asymmetric-spiral infrared antenna," Opt. Lett. 23, 1912-1914 (1998) [CrossRef]
  13. F. J. González and G. D. Boreman, "Comparison of dipole, bowtie, spiral and log-periodic IR antennas," Infrared Phys. Technol. 46418-428 (2005) [CrossRef]
  14. C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, and F. K. Kneubuehl, "Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas," Appl. Phys. B 63, 135-140 (1996) [CrossRef]
  15. C. Fumeaux, M. A. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant lengths of infrared dipole antennas," Infrared Phys. Technol. 41, 271-281 (2000) [CrossRef]
  16. E. N. Grossman, L. R. Vale, D. A. Rudman, K. M. Evenson, and L. R. Zink, "30 THz mixing experiments on high temperature superconducting Josephson junctions," IEEE Trans. Appl. Supercond. 5, 3061-3064 (1995) [CrossRef]
  17. M. E. MacDonald, E. N. Grossman "Niobium microbolometers for far-infrared detection," IEEE Trans. Microwave Theory Techn. MTT-43(4), 893-896 (1995) [CrossRef]
  18. J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, and D. L. Smythe, "AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics," Appl. Phys. Lett. 24, 275-279 (1974) [CrossRef]
  19. I. Wilke, Y. Oppliger, W. Herrmann, and F. K. Kneubuehl, "Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation," Appl. Phys. A58, 329-341 (1994)
  20. E. N. Grossman, T. E. Harvey, and C. D. Reintsema, "Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes," J. Appl. Phys. 91, 10134-10139 (2002) [CrossRef]
  21. E. D. Palik, Handbook of Optical Constants of Solids, Volume 1; New York, Academic, 1980.
  22. E. N. Grossman, J. A. Koch, C. D. Reintsema, A. and Green, "Lithographic dipole antenna properties at 10 μm wavelength: comparison of method-of-moments predictions with experiment," Intl. J. Infrared Milli. 19, 817-825 (1998) [CrossRef]
  23. J. G. Simmons, "Electric tunnel effect between dissimilar electrodes separated by a thin insulating film," J. Appl. Phys. 34, 2581-2590 (1963) [CrossRef]
  24. J. R. Tucker and M. J. Feldman, "Quantum detection at millimeter wavelengths," Rev. Mod. Phys. 57, 1055-1114 (1985) [CrossRef]
  25. A. Hartstein and Z. A. Weinberg, "Unified theory of internal photoemission and photon-assisted tunneling," Phys. Rev. B 20, 1335 - 1338 (1979) [CrossRef]
  26. M. Heiblum, S. Wang, J. R. Whinnery, and T. K. Gustafson, "Characteristics of integrated MOM junctions at dc and at optical frequencies," IEEE J. Quantum Electron. QE-14(3), 159-169 (1978) [CrossRef]
  27. A. Hartstein, Z. A. Weinberg, and D. J. DiMaria, "Experimental test of the quantum-mechanical image-force theory" Phys. Rev. B 25, 7174 - 7182 (1982) [CrossRef]
  28. F. E. Terman, Radio Engineers’ Handbook, New York, McGraw-Hill, 1943, 211-212
  29. P. C. D. Hobbs, R. B. Laibowitz, and F. R. Libsch, "Ni-NiO-Ni tunnel junctions for terahertz and infrared detection," Appl. Opt. 42, 6813-6822 (2005) [CrossRef]
  30. P. C. D. Hobbs, "POEMS: a programmable optimizing electromagnetic simulator," http://www.watson.ibm.com/actj.html
  31. S. J. McNab, N. Moll, and Y. A. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927-2939 (2003) [CrossRef] [PubMed]
  32. K. Terakura, A. R. Williams, T. Oguchi, and J. Kuebler, "Transition-Metal Monoxides: Band or Mott Insulators," Phys. Rev. Lett. 52, 1830-1833 (1984) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited