OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16413–16423

Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy

Timothy J. Muldoon, Mark C. Pierce, Dawn L. Nida, Michelle D. Williams, Ann Gillenwater, and Rebecca Richards-Kortum  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 16413-16423 (2007)
http://dx.doi.org/10.1364/OE.15.016413


View Full Text Article

Enhanced HTML    Acrobat PDF (815 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Conventional histopathology involves sampling, sectioning and staining of tissue specimens prior to microscopic evaluation, and provides diagnostic information at a single location and point in time. In vivo microscopy and molecular-targeted optical labeling are two rapidly developing fields, which together have the potential to provide anatomical and functional indications of disease by staining and imaging tissue in situ. To address the need for high-resolution imaging instrumentation, we have developed a compact, robust, and inexpensive fiber-optic microendoscopy system based around wide-field LED illumination, a flexible 1 mm diameter fiber-optic bundle, and a color CCD camera. We demonstrate the subcellular resolution imaging capabilities of the system through a series of experiments, beginning with simultaneous imaging of three different cancer cell lines in culture, each targeted with a distinct fluorescent label. We used the narrow diameter probe to access subcutaneous tumors in an in vivo murine model, allowing direct comparison of microendoscopy images with macroscopic images and histopathology. A surgically resected tissue specimen from the human oral cavity was imaged across the clinical margin, demonstrating qualitative and quantitative distinction between normal and cancerous tissue based on sub-cellular image features. Finally, the fiber-optic microendoscope was used on topically-stained normal human oral mucosa in vivo, resolving epithelial cell nuclei and membranes in real-time fluorescence images. Our results demonstrate that this imaging system can potentially complement conventional diagnostic techniques, and support efforts to translate emerging molecular-diagnostic and therapeutic agents into clinical use.

© 2007 Optical Society of America

OCIS Codes
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 18, 2007
Revised Manuscript: November 14, 2007
Manuscript Accepted: November 21, 2007
Published: November 27, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Timothy J. Muldoon, Mark C. Pierce, Dawn L. Nida, Michelle D. Williams, Ann Gillenwater, and Rebecca Richards-Kortum, "Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy," Opt. Express 15, 16413-16423 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16413


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, Jr, "In vivo imaging of tumors with protease-activated near-infrared fluorescent probes," Nat. Biotechnol 17, 375-378 (1999). [CrossRef] [PubMed]
  2. S. Ke, W. Xiaoxia, M. Gurfinkel, C. Charnsangavej, S. Wallace, E. M. Sevick-Muraca, and C. Li, "Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts," Cancer Res. 63, 7870-7875 (2003). [PubMed]
  3. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, and S. Nie, "In vivo cancer targeting and imaging with semiconductor quantum dots," Nat. Biotechnol. 22, 969-976 (2004). [CrossRef] [PubMed]
  4. A. Becker, C. Hessenius, K. Licha, B. Ebert, U. Sukowski, W. Semmler, B. Wiedenmann, and C. Grötzinger, "Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands," Nat. Biotechnol. 19, 327-331 (2001). [CrossRef] [PubMed]
  5. F. A. Jaffer and R. Weissleder, "Molecular imaging in the clinical arena," JAMA 293, 855-862 (2005). [CrossRef] [PubMed]
  6. T. F. Massoud and S. S. Gambhir, "Integrating noninvasive molecular imaging into molecular medicine: an evolving paradigm," Trends Mol. Med. 13, 183-191 (2007). [CrossRef] [PubMed]
  7. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, "Fiber-optic fluorescence imaging," Nat. Methods 2, 941-950 (2005). [CrossRef] [PubMed]
  8. S. Kimura and T. Wilson, "Confocal scanning optical microscope using single-mode fiber for signal detection," Appl. Opt. 30, 2143-2150 (1991). [CrossRef] [PubMed]
  9. L. Giniunas, R. Juškaitis, and S. V. Shatalin, "Scanning fiber-optic microscope" Electron Lett. 27, 724-726 (1991). [CrossRef]
  10. P. M. Delaney, M. R. Harris, and R. G. King, "Fibre-optic laser scanning confocal microscope suitable for fluorescence imaging," Appl. Opt. 33, 573-577 (1994). [CrossRef] [PubMed]
  11. D. L. Dickensheets and G. S. Kino, "Micromachined scanning confocal optical microscope," Opt. Lett. 21, 764-766 (1996). [CrossRef] [PubMed]
  12. J. T. C. Liu, M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang, "Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner," Opt. Lett. 32, 256-258 (2007). [CrossRef] [PubMed]
  13. H.-J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, "Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens" Opt. Express 15, 9113-9122 (2007). [CrossRef] [PubMed]
  14. E. J. Seibel and Q. Y. J. Smithwick, "Unique features of optical scanning, single fiber Endoscopy," Lasers Surg. Med. 30, 177-183 (2002). [CrossRef] [PubMed]
  15. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, "Three-dimensional miniature endoscopy" Nature 443, 765 (2006). [CrossRef] [PubMed]
  16. M. R. Harris, UK patent: GB 2,340 332 B (2001).
  17. A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, "Fluorescence confocal endomicroscope for in vivo microscopy of the upper and lower gastrointestinal tract," Gastrointest. Endosc. 62, 686-695 (2005). [CrossRef] [PubMed]
  18. R. Kiesslich, M. Goetz, M. Vieth, P. R. Galle, and M. F. Neurath, "Technology insight: confocal laser endoscopy for in vivo diagnosis of colorectal cancer," Nat. Clin. Pract. Oncol. 4, 480-490 (2007). [CrossRef] [PubMed]
  19. A. F. Gmitro and D. J. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Lett. 18, 565-567 (1993). [CrossRef] [PubMed]
  20. R. Juškaitis, T. Wilson, and T. F. Watson, "Real-time white light reflection confocal microscopy using a fibre-optic bundle," Scanning 19, 15-19 (1997).
  21. C. Liang, M. Descour, K.-B. Sung, and R. Richards-Kortum, "Fiber confocal reflectance microscope (FCRM) for in-vivo imaging," Opt. Express 9, 821-830 (2001). [CrossRef] [PubMed]
  22. V. Dubaj, A. Mazzolini, A. Wood, and M. Harris, "Optic fibre bundle contact imaging probe employing a laser scanning confocal microscope," J. Microsc. 207, 108-117 (2002). [CrossRef] [PubMed]
  23. E. Laemmel, M. Genet, G. Le Goualher, A. Perchant, J.-F. Le Gargasson, and E. Vicaut, "Fibered confocal fluorescence microscopy (Cell-viZio) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy," J. Vasc. Res. 41, 400-411 (2004). [CrossRef] [PubMed]
  24. F. Jean, G. Bourg-Heckly, and B. Viellerobe, "Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis," Opt. Express 15, 4008-4017 (2007). [CrossRef] [PubMed]
  25. Y. S. Sabharwal, A. R. Rouse, L. Donaldson, M. F. Hopkins, and A. F. Gmitro, "Slit-scanning confocal microendoscope for high-resolution in Vivo Imaging," Appl. Opt. 38, 7133-7144 (1999). [CrossRef]
  26. A. R. Rouse and A. F. Gmitro, "Multispectral imaging with a confocal microendoscope," Opt. Lett. 25, 1708-1710 (2000). [CrossRef]
  27. P. Delaney and M. Harris, Handbook of Biological Confocal Microscopy, 3rd edition, (Springer, New York, 2007), Chap. 26.
  28. R. R. Steinman, "Pharmacologic control of dentinal fluid movement and dental caries in rats," J. Dent. Res. 47, 720-724 (1968). [CrossRef] [PubMed]
  29. T. Collier, M. Guillaud, M. Follen, A. Malpica, and R. Richards-Kortum, "Real-time reflectance confocal microscopy: comparison of two-dimensional images and three-dimensional image stacks for detection of cervical precancer," J. Biomed. Opt. 12, 024021 (2007). [CrossRef] [PubMed]
  30. K.-B. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, and M. Descour, "Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo," Opt. Express 11, 3171-3181 (2003). [CrossRef] [PubMed]
  31. A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, "Design and Demonstration of a Miniature Catheter for a Confocal Microendoscope," Appl. Opt. 43, 5763-5771 (2004). [CrossRef] [PubMed]
  32. M. Hirano, Y. Yamashita, and A. Miyakawa, "In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments," Brain. Res. 732, 61-68 (1996). [CrossRef] [PubMed]
  33. G. R. Poe, D. M. Rector, and R. M. Harper, "Hippocampal reflected optical patterns during sleep and waking states in the freely behaving cat," J. Neurosci. 14, 2933-2942 (1994). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MOV (2948 KB)     
» Media 2: MOV (3179 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited