OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16448–16456

Towards the short-wavelength limit lasing at 1450 nm over 4I13/24I15/2 transition in silica-based erbium-doped fiber

Nan-Kuang Chen, Chi-Ming Hung, Sien Chi, and Yinchieh Lai  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 16448-16456 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transition rate of the stimulated emission at the higher energy levels of the excited states in a silica-based erbium-doped fiber can be enhanced by introducing fundamental-mode cutoff filtering mechanism. The electrons excited by optical pumping can more occupy the higher energy levels of the excited states when the transition rate for the lower energy levels (longer wavelengths) of the excited states is substantially suppressed. The achieved lasing wavelength can thus be moving toward the shorter wavelengths of the gain bandwidth. The laser transition between 4I13/24I15/2 multiplets of the silica-based erbium-doped fiber is known to emit fluorescence with the shortest wavelength around 1450 nm. We, for the first time, experimentally demonstrate a widely tunable fiber laser at the wavelength very close to 1450 nm by using a standard silica-based C-band erbium-doped fiber. The tuning range covers 1451.9–1548.1 nm, with the best temperature tuning efficiency as high as 57.3 nm/°C, by discretely introducing tunable fundamental-mode cutoff tapered fiber filters along a 16-m-long erbium-doped fiber under a 980 nm pump power around 200 mW. The signal-ASE-ratio can be higher than 45 dB whereas the FWHM of the laser lasing lights can be reduced below 0.2 nm by using an additional Fabry-Perot filter.

© 2007 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.2410) Fiber optics and optical communications : Fibers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber
(170.1870) Medical optics and biotechnology : Dermatology

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 15, 2007
Revised Manuscript: November 21, 2007
Manuscript Accepted: November 21, 2007
Published: November 27, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Nan-Kuang Chen, Chi-Ming Hung, Sien Chi, and Yinchieh Lai, "Towards the short-wavelength limit lasing at 1450 nm over 4I13/2 → 4I15/2 transition in silica-based erbium-doped fiber," Opt. Express 15, 16448-16456 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Y. Paithankar, J. M. Clifford, B. A. Saleh, E. V. Ross, C. A. Hardaway, and D. Barnette, "Subsurface skin renewal by treatment with a 1450-nm laser in combination with dynamic cooling," J. of Biomedical Opt. 8, 545-551 (2003). [CrossRef]
  2. N. Fournier, S. Dahan, G. Barneon, S. Diridollou, J. M. Lagarde, Y. Gall, and S. Mordon, "Nonablative remodeling: clinical, histologic, ultrasound imaging, and profilometric evalution of a 1540 nm Er: glass laser," Dermatol. Surg. 27, 799-806 (2001). [CrossRef] [PubMed]
  3. C. C. Wang, Y. M. Sue, C. H. Yang, and C. K. Chen, "A comparison of Q-switched alexandrite laser and intense pulsed light for the treatment of freckles and lentigines in Asian persons: A randomized, physician-blinded, split-face comparative trial," J. Am. Acad. Dermatol. 54, 804-810 (2006). [CrossRef]
  4. J. Rao and R. E. Fitzpatrick, "Use of the Q-switched 755-nm Alexandrite laser to treat recalcitrant pigment after depigmentation therapy for vitiligo," Dermatol. Surg. 30, 1043-1045 (2004). [CrossRef] [PubMed]
  5. S. Shen, A. Jha, L. Huang, and P. Joshi, "980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification," Opt. Lett. 30, 1437-1439 (2005). [CrossRef] [PubMed]
  6. E. R. M. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-doped tellurite fiber amplifier," IEEE Photon. Technol. Lett. 16, 777-779 (2004). [CrossRef]
  7. Y. Akasaka and S. Yam, "Gain bandwidth expansion to S-plus band using fiber OPA pumped by gain-clamping signal of a GS-TDFA," in Proc. of OFC 2002, ThGG30 (2002).
  8. J. Zhang, S. Dai, S. Li, S. Xu, G. Wang, and L. Hu, "Characterization of broadband amplified spontaneous emission of erbium-doped tellurite fiber with D-shape cladding," Mater. Lett. 58, 3532-3535 (2004). [CrossRef]
  9. J. Zhang, S. Dai, S. Xu, G. Wang, and L. Hu, "Fabrication and amplified spontaneous emission spectrum of Er3+-doped tellurite glass fiber with D-shape cladding," J. Alloys Compd. 387, 308-312 (2005). [CrossRef]
  10. M. C. Ho, K. Uesaka, M. Marhic, Y. Akasaka, and L. G. Kazovsky, "200-nm-Bandwidth fiber optic amplifier combining parametric and Raman gain," J. Lightwave Technol. 19, 977981 (2001).
  11. E. Desurvire and J. R. Simpson, "Evaluation of 4I15/2 and 4I13/2 Stark-level energies in erbium-doped aluminosilicate glass fibers," Opt. Lett. 15, 547-549 (1990). [CrossRef] [PubMed]
  12. N. K. Chen, K. C. Hsu, S. Chi, and Y. Lai, "Tunable Er3+-doped fiber amplifiers covering S and C + L bands over 1490-1610 nm based on discrete fundamental-mode cutoff filters," Opt. Lett. 31, 2842-2844 (2006). [CrossRef] [PubMed]
  13. M. A. Arbore, Y. Zhou, H. Thiele, J. Bromage, and L. Nelson, "S-band erbium-doped fiber amplifiers for WDM transmission between 1488 and 1508 nm," in Proc. of OFC 2003, WK2 (2003).
  14. M. Foroni, F. Poli, A. Cucinotta, and S. Selleri, "S-band depressed-cladding erbium-doped fiber amplifier with double-pass configuration," Opt. Lett. 31, 3228-3230 (2006). [CrossRef] [PubMed]
  15. E. Desurvire, Erbium-doped fiber amplifiers: Principles and applications (Wiley-Interscience, New York, 1994), Chap. 1.
  16. M. A. Arbore, "Application of fundamental-mode cutoff for novel amplifiers and lasers," in Proc. of OFC 2005, OFB4 (2005).
  17. D. S. Gasper, P. F. Wysocki, W. A. Reed, and A. M. Venqsarkar, "Evaluation of chromatic dispersion in erbium-doped fibers," in Proc. of LEOS 1993, FPW4.2 (1993). [CrossRef]
  18. N. K. Chen, S. Chi, and S. M. Tseng, "Wideband tunable fiber short-pass filter based on side-polished fiber with dispersive polymer overlay," Opt. Lett. 29, 2219-2221 (2004). [CrossRef] [PubMed]
  19. H. Ahmad, N. K. Saat, and S. W. Harun, "S-band erbium-doped fiber ring laser using a fiber Bragg grating," Laser Phys. Lett. 2, 369-371 (2005). [CrossRef]
  20. A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, "A broadly tunable erbium-doped fiber ring laser: experimentation and modeling," IEEE J. Sel. Top. Quantum. Electron. 7, 22-29 (2001). [CrossRef]
  21. J. Yang, S. Dai, N. Dai, L. Wen, L. Hu, and Z. Jiang, "Investigation on nonradiative decay of 4I13/2 → 4I15/2 transition of Er3+-doped oxide glasses," J. Lumin. 106, 9-14 (2004). [CrossRef]
  22. S. Sudo, Optical Fiber Amplifiers: Materials, Devices, and Applications (Artech House, Boston, 1997), Chap. 1.
  23. N. K. Chen, S. Chi, and S. M. Tseng, "An efficient local fundamental-mode cutoff for thermo-optic tunable Er3+-doped fiber ring laser," Opt. Express 13, 7250-7255 (2005). [CrossRef] [PubMed]
  24. N. K. Chen and S. Chi, "Novel local liquid-core single mode fiber for dispersion engineering using submicron tapered fiber," in Proc. of OFC 2007, JThA5 (2007).
  25. W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, "Absorption and emission cross section of Er3+ doped silica fibers," IEEE J. Quan. Electron. 27, 1004-1010 (1991). [CrossRef]
  26. X. S. Jiang, Q Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, "Demonstration of microfiber knot laser," Appl. Phys. Lett. 89, Art. no. 143513 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited