OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16457–16470

Dramatic performance enhancement of evanescent-wave multimode fiber fluorometer using non-Lambertian light diffuser

Jianjun Ma and Wojtek J. Bock  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 16457-16470 (2007)
http://dx.doi.org/10.1364/OE.15.016457


View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To enhance the performance of an evanescent-wave (EW) based sensor, efforts are usually made to modify the sensor architecture rather than the excitation source. In this paper, we theoretically examine the role of meridian and skew rays under total internal reflection (TIR) as well as tunneling rays with the emphasis on sensor performance. Our further investigation indicates that the intensity profile of the light source enormously influences the EW power, and thus the collectable fluorescent emission level as well. A non-Lambertian fiber-optic side-emitting diffuser (FOSED) is proposed and experimentally verified, revealing that a proper alignment of this FOSED can dramatically improve the signal quality and reduce the level of stray excitation light. In particular, the adoption of a FOSED or other light diffusers with similar output profiles will ensure that the excitation power is used more efficiently, suggesting a lower demand on the excitation source power level, and the performance of the stray light filter and detector. The superiority of this innovation is further addressed by comparing it with a long period grating (LPG) fiber-optic sensor, which claims highly efficient core to cladding mode coupling. This study presents a new concept for the construction of a high-performance and cost-effective EW-based sensor system.

© 2007 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(230.1980) Optical devices : Diffusers
(230.6080) Optical devices : Sources
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 24, 2007
Revised Manuscript: November 12, 2007
Manuscript Accepted: November 20, 2007
Published: November 28, 2007

Citation
Jianjun Ma and Wojtek J. Bock, "Dramatic performance enhancement of evanescent-wave multimode fiber fluorometer using non-Lambertian light diffuser," Opt. Express 15, 16457-16470 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16457


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Enderlein, T. Ruckstuhl, and S. Stefean, "Highly efficient optical detection of surface-generated fluorescence," Appl. Opt. 38, 724-732 (1999). [CrossRef]
  2. L. Polerecky, J. Hamrle, and B. D. MacCraith, "Theory of the radiation of dipoles placed within a multilayer system," Appl. Opt. 39, 3968-3977 (2000). [CrossRef]
  3. D. Marcuse, "Launching light into fiber cores from sources located in the cladding," IEEE J. Lightwave Technol. 6, 1273-1279 (1988). [CrossRef]
  4. E. H. Lee, R. E. Benner, J. B. Fenn, and R. K. Change, "Angular distribution of fluorescence from liquids and monodispersed spheres by evanescent wave excitation," Appl. Opt. 18, 862-868 (1979). [CrossRef]
  5. C. R. Taitt, G. P. Anderson, and F. S. Ligler, "Evanescent wave fluorescence biosensors," Biosens. Bioelectron. 20, 2470-2487 (2005). [CrossRef] [PubMed]
  6. L. C. Shriver-Lake, K. A. Breslin, P. T. Charles, D. W. Conrad, J. P. Golden, and F. S. Ligler, "Detection of TNT in water using an evanescent wave fiber-optic biosensor," Anal. Chem. 67, 2431-2435 (1995). [CrossRef]
  7. R. M. Wadkins, J. P. Golden, L. M. Pritsiolas, and F. S. Ligler, "Detection of multiple toxic agents using a planar array immunosensor," Biosens. Bioelectron. 13, 407-415 (1998). [CrossRef] [PubMed]
  8. S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, "Evanescent field in surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopies," Anal. Chem. 76, 2210-2219 (2004). [CrossRef] [PubMed]
  9. N. Fang, Z. Liu, T.-J. Yen, and X. Zhang, "Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation," Appl. Phys. A 80, 1315-1325 (2005). [CrossRef]
  10. R. C. Jorgenson and S. S. Yee, "A fiber-optic chemical sensor based on surface plasmon resonance," Sens. Act. B,  12, 213-220 (1993). [CrossRef]
  11. R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, "Novel spectral fiber optic sensor based on surface plasmon resonance," Sens. Act. B,  74, 106-111 (2001). [CrossRef]
  12. N. Calander and M. Willander, "Optical field enhancement by surface-plasmon resonance: Theory and application to micro-bioelectronics," in Proceedings of IEEE conference on Optoelectronic and Microelectronic Materials and Devices (IEEE 2002), 531-536 (2002).
  13. T. Ruckstuhl and D. Verdes, "Supercritical angle fluorescence (SAF) microscopy," Opt. Express 12, 4246-4254 (2004) http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-18-4246 [CrossRef] [PubMed]
  14. R. Blue, N. Kent, L. Polerecky, H. McEvoy, D. Gray, and B.D. MacCraith, "Platform for enhanced detection efficiency in luminescence-based sensors," Electron. Lett. 41, 682-684 (2005). [CrossRef]
  15. J. -F. Gouin, A. Goyle, and B. D. MacCraith, "Fluorescence capture by planar waveguide as platform for optical sensors," Electron. Lett. 34, 1685-1686 (1998). [CrossRef]
  16. J. P. Golden, G. P. Anderson, S. Y. Rabbany, and F. S. Ligler, "An evanescent wave biosensor- Part II: Fluorescent signal acquisition from tapered fiber optic probes," IEEE Trans. Biomed. Eng. 41, 585-591 (1994). [CrossRef] [PubMed]
  17. Y. Raichlin, L. Fel, and A. Katzir, "Evanescent-wave infrared spectroscopy with flattened fibers as sensing elements," Opt. Lett. 28, 2297-2299 (2003). [CrossRef] [PubMed]
  18. See RAPTOR™ 4-channel bioassay system made by Research International, Inc., available at http://www.resrchintl.com/raptor-detection-system.html.
  19. E. E. Carlyon, C. R. Lowe, D. Reid, and I. Bennion, "A single mode fiber-optic evanescent wave biosensor," Biosens. Bioelectron. 7, 141-146 (1992). [CrossRef] [PubMed]
  20. Z. M. Hale, F. P. Payne, R. S. Marks, C. R. Lowe, and M. M. Levine, "The single mode tapered optical fiber loop immunosensor," Biosens. Bioelectron. 11, 137-148 (1996). [CrossRef]
  21. T. R. Glass, S. Lackie, and T. Hirschfeld, "Effect of numerical aperture on signal level in cylindrical waveguide evanescent fluorosensors," Appl. Opt. 26, 2181-2187 (1987). [CrossRef] [PubMed]
  22. J. Ma and W. Bock, "Reshaping sample fluid droplet: toward combined performance enhancement of evanescent-wave fiber-optic fluorometer", Opt. Lett. 32, 8-10 (2007). [CrossRef]
  23. D. Gloge, "Weakly guiding fibers," Appl. Opt. 10, 2252-2258 (1971). [CrossRef] [PubMed]
  24. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  25. G. Keiser, Optical fiber communications (McGraw-Hill Higher Education, third edition, 2000), Ch. 5.
  26. M. J. Adams, D. N. Payne, and F. M. E. Sladen, "Leaky rays on optical fibers of arbitrary (circularly symmetric) index profiles", Electron. Lett. 11, 238-240 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited