OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16546–16560

Distortion of 3D SU8 Photonic Structures Fabricated by Four-beam Holographic Lithography with Umbrella Configuration

Xuelian Zhu, Yongan Xu, and Shu Yang  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 16546-16560 (2007)
http://dx.doi.org/10.1364/OE.15.016546


View Full Text Article

Enhanced HTML    Acrobat PDF (870 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a quantitative study of the distortion from a three-term diamond-like structure fabricated in SU8 polymer by four-beam holographic lithography. In the study of the refraction effect, theory suggests that the lattice in SU8 should be elongated in the [111] direction but have no distortion in the (111) plane, and each triangular-like hole array in the (111) plane would rotate by ~30° away from that in air. Our experiments agree with the prediction on the periodicity in the (111) plane and the rotation due to refraction effect, however, we find that the film shrinkage during lithographic process has nearly compensated the predicted elongation in the [111] direction. In study of photonic bandgap (PBG) properties of silicon photonic crystals templated by the SU8 structure, we find that the distortion has decreased quality of PBG.

© 2007 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(120.5710) Instrumentation, measurement, and metrology : Refraction
(260.3160) Physical optics : Interference
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: September 28, 2007
Revised Manuscript: November 18, 2007
Manuscript Accepted: November 18, 2007
Published: November 29, 2007

Citation
Xuelian Zhu, Yongan Xu, and Shu Yang, "Distortion of 3D SU8 photonic structures fabricated by four-beam holographic lithography withumbrella configuration," Opt. Express 15, 16546-16560 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16546


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. A. Mekis, J. C. Chen, I. Kurland, S. H. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Phys. Rev. Lett. 77, 3787-3790 (1996). [CrossRef] [PubMed]
  4. A. Chutinan and S. Noda, "Highly confined waveguides and waveguide bends in three-dimensional photonic crystal," Appl. Phys. Lett. 75, 3739-3741 (1999). [CrossRef]
  5. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003). [CrossRef] [PubMed]
  6. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: a new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994). [CrossRef]
  7. T. Prasad, V. Colvin, and D. Mittleman, "Superprism phenomenon in three-dimensional macroporous polymer photonic crystals," Phys. Rev. B 67, 165103 (2003). [CrossRef]
  8. P. V. Parimi, W. T. T. Lu, P. Vodo, and S. Sridhar, "Photonic crystals - Imaging by flat lens using negative refraction," Nature 426, 404-404 (2003). [CrossRef] [PubMed]
  9. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998). [CrossRef]
  10. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000). [CrossRef] [PubMed]
  11. Y. A. Vlasov, X. Z. Bo, J. C. Sturm, and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001). [CrossRef] [PubMed]
  12. A. C. Edrington, A. M. Urbas, P. DeRege, C. X. Chen, T. M. Swager, N. Hadjichristidis, M. Xenidou, L. J. Fetters, J. D. Joannopoulos, Y. Fink, and E. L. Thomas, "Polymer-based photonic crystals," Adv. Mater. 13, 421-425 (2001). [CrossRef]
  13. S. R. Kennedy, M. J. Brett, O. Toader, and S. John, "Fabrication of tetragonal square spiral photonic crystals," Nano Lett. 2, 59-62 (2002). [CrossRef]
  14. G. M. Gratson, M. Xu, and J. A. Lewis, "Microperiodic structures - Direct writing of three-dimensional webs" Nature 428, 386 (2004). [CrossRef] [PubMed]
  15. K. K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, "Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing," Adv. Mater. 17, 541-545 (2005). [CrossRef]
  16. J. H. Moon, J. Ford, and S. Yang, "Fabricating three-dimensional polymer photonic structures by multi-beam interference lithography," Polym. Adv. Technol. 17, 83-93 (2006). [CrossRef]
  17. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, "Polarization stop bands in chiral polymeric three-dimensional photonic crystals," Adv. Mater. 19, 207-210 (2007). [CrossRef]
  18. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, "65 nm feature sizes using visible wavelength 3-D multiphoton lithography," Opt. Express 15, 3426-3436 (2007). [CrossRef] [PubMed]
  19. S. R. Marder, J. L. Bredas, and J. W. Perry, "Materials for multiphoton 3D microfabrication," MRS Bull. 32, 561-565 (2007). [CrossRef]
  20. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003). [CrossRef]
  21. Y. K. Lin, and P. R. Herman, "Effect of structural variation on the photonic band gap in woodpile photonic crystal with body-centered-cubic symmetry," J. Appl. Phys. 98, 063104 (2005). [CrossRef]
  22. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, "Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal," Opt. Express 10, 1074-1082 (2002). [PubMed]
  23. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, "Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures," Appl. Phys. Lett. 84, 5434-5436 (2004). [CrossRef]
  24. Y. C. Zhong, S. A. Zhu, H. M. Su, H. Z. Wang, J. M. Chen, Z. H. Zeng, and Y. L. Chen, "Photonic crystal with diamondlike structure fabricated by holographic lithography," Appl. Phys. Lett. 87, 061103 (2005). [CrossRef]
  25. D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, "Shrinkage precompensation of holographic three-dimensional photonic-crystal templates," Adv. Mater. 18, 2964-2968 (2006). [CrossRef]
  26. Y. Lin, P. R. Herman, and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117 (2005). [CrossRef]
  27. Y. Lin, D. Rivera, and K. P. Chen, "Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques," Opt. Express 14, 887-892 (2006). [CrossRef] [PubMed]
  28. W. D. Mao, J. W. Dong, Y. C. Zhong, G. Q. Liang, and H. Z. Wang, "Formation principles of two-dimensional compound photonic lattices by one-step holographic lithography," Opt. Express 13, 2994-2999 (2005). [CrossRef] [PubMed]
  29. J. Xu, R. Ma, X. Wang, and W. Y. Tam, "Icosahedral quasicrystals for visible wavelengths by optical interference holography," Opt. Express 15, 4287-4295 (2007). [CrossRef] [PubMed]
  30. C. K. Ullal, M. Maldovan, M. Wohlgemuth, E. L. Thomas, C. A. White, and S. Yang, "Triply periodic bicontinuous structures through interference lithography: a level-set approach," J. Opt. Soc. Am. A 20, 948-954 (2003). [CrossRef]
  31. H. Lorenz, M. Despont, N. Fahrni, N. LaBianca, P. Renaud, and P. Vettiger, "SU-8: a low-cost negative resist for MEMS," J. Micromech. Microeng. 7, 121-124 (1997). [CrossRef]
  32. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge, U. K.; New York, 1999). [PubMed]
  33. J. H. Moon, S. Yang, W. T. Dong, J. W. Perry, A. Adibi, and S. M. Yang, "Core-shell diamond-like silicon photonic crystals from 3D polymer templates created by holographic lithography," Opt. Express 14, 6297-6302 (2006). [CrossRef] [PubMed]
  34. L. Z. Cai, X. L. Yang, and Y. R. Wang, "All fourteen Bravais lattices can be formed by interference of four noncoplanar beams," Opt. Lett. 27, 900-902 (2002). [CrossRef]
  35. D. C. Meisel, M. Wegener, and K. Busch, "Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: Symmetries and complete photonic band gaps," Phys. Rev. B 70, 165104 (2004). [CrossRef]
  36. International Tables for Crystallography. Vol. A, Space-Group Symmetry (Kluwer, Dordrecht, London, 2002).
  37. International Tables for Crystallography. Vol. B, Reciprocal Space (Kluwer, Dordrecht, Boston, 2001).
  38. W. H. Zhou, S. M. Kuebler, K. L. Braun, T. Y. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002). [CrossRef] [PubMed]
  39. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002). [CrossRef]
  40. S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," Proc. Nat. Acad. Sci. USA 101, 12428-12433 (2004). [CrossRef] [PubMed]
  41. T. Kondo, S. Juodkazis, and H. Misawa, "Reduction of capillary force for high-aspect ratio nanofabrication," Appl. Phys. A 81, 1583-1586 (2005). [CrossRef]
  42. S. G. Johnson, and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  43. J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, "Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition," Adv. Mater. 18, 1561-1565. (2006). [CrossRef]
  44. J. H. Moon, Y. Xu, Y. Dan, S. M. Yang, A. T. Johnson, and S. Yang, "Triply periodic bicontinuous structures as templates for photonic crystals: A pinch-off problem," Adv. Mater. 19, 1510-1514 (2007). [CrossRef]
  45. T. Y. M. Chan, O. Toader, and S. John, "Photonic band gap templating using optical interference lithography," Phys. Rev. E 71, 046605 (2005). [CrossRef]
  46. T. Y. M. Chan, O. Toader, and S. John, "Photonic band-gap formation by optical-phase-mask lithography," Phys. Rev. E 73, 046610 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited