OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16596–16603

Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves

Il-min Lee, Jaehoon Jung, Junghyun Park, Hwi Kim, and Byoungho Lee  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 16596-16603 (2007)
http://dx.doi.org/10.1364/OE.15.016596


View Full Text Article

Enhanced HTML    Acrobat PDF (267 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have studied the dispersion characteristics of single-mode channel plasmon polaritons (CPPs) with step-trench-type groove waveguides. From the numerical simulations using the finite-element method, the modal shapes and the complex propagation constants of the CPPs over a wide spectral range were obtained. It is shown that the dispersion characteristics of the step-trench-type CPP waveguide, which is composed of a step trench with a stacking nature, show an intermediate feature between the narrow and broad trenches. The results show that this configuration allows for a well-confined CPP with a moderate propagation loss at the wavelengths investigated.

© 2007 Optical Society of America

OCIS Codes
(230.7380) Optical devices : Waveguides, channeled
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 15, 2007
Revised Manuscript: November 21, 2007
Manuscript Accepted: November 27, 2007
Published: November 29, 2007

Citation
Il-min Lee, Jaehoon Jung, Junghyun Park, Hwi Kim, and Byoungho Lee, "Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves," Opt. Express 15, 16596-16603 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16596


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Rather, Surface Plasmons (Springer-Verlag, Berlin, 1988).
  2. R. Zia, M. D. Selker, P. B. Catrysse, and M. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A 21, 2442-2446 (2004). [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  4. S. Kim, H. Kim, Y. Lim, and B. Lee, "Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings," Appl. Phys. Lett. 90, 051113 (2007). [CrossRef]
  5. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-477 (1997). [CrossRef] [PubMed]
  6. P. Berini, "Plasmon-polariton modes guided by a metal film of finite width," Opt. Lett. 24, 1011-1013 (1999). [CrossRef]
  7. L. Liu, Z. Han, and S. He, "Novel surface plasmon waveguide for high integration," Opt. Express 13, 6645-6650 (2005). [CrossRef] [PubMed]
  8. I. V. Novikov and A. A. Maradudin, "Channel polaritons," Phys. Rev. B 66, 035403 (2002). [CrossRef]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laulet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  11. S. I. Bozhevolnyi, "Effective-index modeling of channel plasmon polaritons," Opt. Express 14, 9467-9476 (2006). [CrossRef] [PubMed]
  12. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, "Channel plasmon-polaritons: modal shape, dispersion, and losses," Opt. Lett. 31, 3447-3449 (2006). [CrossRef] [PubMed]
  13. G. Vernois and S. Fan, "Modes of subwavelength plasmonic slot waveguides," J. Lightwave Technol. 25, 2511-2521 (2007). [CrossRef]
  14. E. Feigenbaum and M. Orenstein, "Modeling of complementary (void) plasmon waveguiding," J. Lightwave Technol. 25, 2547-2562 (2007). [CrossRef]
  15. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, "Wavelength selective nanophotonics components utilizing channel plasmon polaritons," Nano Lett. 7, 880-884 (2007). [CrossRef] [PubMed]
  16. http://www.comsol.com/>
  17. A. Vial, A.-S. Grimault, D. Macias, D. Barchiesi, and M. L. de la Chapelle, "Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method," Phys. Rev. B 71, 085416 (2005). [CrossRef]
  18. S. H. Ko, I. Park, H. Pen, C. P. Gigoropoulos, A. P. Pisano, C. K. Luscombe, and J. M. Frechet, "Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication," Nano Lett. 7, 1869-1877 (2007). [CrossRef] [PubMed]
  19. H. L. Chen, S. Y. Chuang, H. C. Cheng, C. H. Lin, and T. C. Chu, "Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure," Microelectron. Eng. 83, 893-896 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: GIF (210 KB)     
» Media 2: GIF (218 KB)     
» Media 3: GIF (248 KB)     
» Media 4: GIF (236 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited