OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16696–16701

Optical ridge waveguides in SBN crystal produced by low-dose carbon ion implantation followed by a sputter etching technique

Yang Tan, Feng Chen, and Huai-Jin Zhang  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 16696-16701 (2007)
http://dx.doi.org/10.1364/OE.15.016696


View Full Text Article

Enhanced HTML    Acrobat PDF (310 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper demonstrates, for the first time, a method to fabricate optical ridge waveguides in SBN photorefractive crystal, i.e. by first using high-energy carbon ion implantation (forming planar waveguide substrate) followed by Ar+ ion sputter etching (constructing ridged stripes). A two-dimensional (2D) cross-sectional refractive index profile of ridge waveguide is reconstructed by carefully considering the ridged topography as well as the index distributions of the planar waveguide. Based on this profile, the waveguide modes are calculated, in which shows a reasonable agreement with the experimentally observed modal near-field intensity distributions.

© 2007 Optical Society of America

OCIS Codes
(160.5320) Materials : Photorefractive materials
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

History
Original Manuscript: August 27, 2007
Revised Manuscript: November 11, 2007
Manuscript Accepted: November 15, 2007
Published: December 3, 2007

Citation
Yang Tan, Feng Chen, and Huai-Jin Zhang, "Optical ridge waveguides in SBN crystal produced by low-dose carbon ion implantation followed by a sputter etching technique," Opt. Express 15, 16696-16701 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16696


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Megumi, H. Kozuka, M. Kobayashi, and Y. Furuhata, "High-sensitive holographic storage in Ce-doped SBN," Appl. Phys. Lett. 30, 631-633 (1977). [CrossRef]
  2. K. Buse, A. Gerwens, S. Wevering, and E. Krätzig, "Charge-transport parameters of photorefractive strontium-barium niobate crystals doped with cerium," J. Opt. Soc. Am. B 15, 1674-1677 (1998). [CrossRef]
  3. T. Schwartz, G. Bartal, S. Fishman and M. Segev, "Transport and Anderson Localization in disordered two-dimensional Photonic Lattices," Nature 446, 52-55 (2007). [CrossRef] [PubMed]
  4. D. Kip, M. Soljacic, M. Segev, E. Eugenieva and D. N. Christodoulides, "Modulation instability and pattern formation in spatially incoherent light beams," Science 290, 495-498 (2000). [CrossRef] [PubMed]
  5. J. Fleischer, G. Bartal, O. Cohen, T. Schwartz, O. Manela, B. Freedman, M. Segev, H. Buljan, and N. Efremidis, "Spatial photonics in nonlinear waveguide arrays," Opt. Express 13, 1780-1796 (2005). [CrossRef] [PubMed]
  6. D. Kip, M. Wesner, V. Shandarov, and P. Moretti, "Observation of bright spatial photorefractive solitons in a planar strontium barium niobate waveguide," Opt. Lett. 23, 921-923 (1998). [CrossRef]
  7. K. Gallo and G. Assanto, "All-optical diode based on second-harmonic generation in an asymmetric waveguide," J. Opt. Soc. Am. B 16, 267-269 (1999). [CrossRef]
  8. C. Grivas, D. P. Shepherd, R. W. Eason, L. Laversenne, P. Moretti, C. N. Borca, and M. Pollnau, "Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation," Opt. Lett. 31, 3450-3452 (2006). [CrossRef] [PubMed]
  9. D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998). [CrossRef]
  10. A. Sjoberg, G. Arvidsson, and A. A. Lipovskii, "Characterization of waveguides fabricated by titanium diffusion in magnesium-doped lithium niobate," J. Opt. Soc. Am. B 5, 285-291 (1988). [CrossRef]
  11. M. M. Abouelleil, G. A. Ball, W. L. Nighan, and D. J. Opal, "Low-loss erbium-doped ion-exchanged channel waveguides," Opt. Lett. 16, 1949-1951 (1991). [CrossRef] [PubMed]
  12. Mailis, A. A. Anderson, S. J. Barrington, W. S. Brocklesby, R. Greef, H. N. Rutt, R. W. Eason, N. A. Vainos, and C. Grivas, "Photosensitivity of lead germanate glass waveguides grown by pulsed laser deposition," Opt. Lett. 23, 1751-1753 (1998). [CrossRef]
  13. P. D. Townsend, P. J. Chandler, and L. Zhang, "Optical Effects of Ion Implantation," (Cambridge U. Press, Cambridge, 1994).
  14. F. Chen, X. L. Wang, and K. M. Wang, "Developments of ion implanted optical waveguides in optical materials: A review," Opt. Mater. 29, 1523-1542 (2007). [CrossRef]
  15. F. Chen, H. Hu, K. M. Wang, B. Teng, J. Y. Wang, Q. M. Lu, and D. Y. Shen, "Formation of a planar optical waveguide by mega-electron-volt He+ and P+ ions implanted in a BiB3O6 crystal," Opt. Lett. 26, 1993-1995 (2001). [CrossRef]
  16. T.C. Sum, A.A. Bettiol, J.A. van Kan, S. V. Rao, F. Watt, K. Liu, and E.Y.B. Pun, "Direct imaging of the end-of-range and surface profiles of proton beam written erbium-doped waveguide amplifiers by atomic force microscopy", J. Appl. Phys. 98, 033533 (2005). [CrossRef]
  17. A. Guarino, M. Jazbinšek, C. Herzog, R. Degl’Innocenti, G. Poberaj, and P. Günter, "Optical waveguides in Sn2P2S6 by low fluence MeV He+ ion implantation," Opt. Express 14, 2344-2358 (2006). [CrossRef] [PubMed]
  18. T. C. Sum, A. A. Bettiol, H. L. Seng, I. Rajta, J. A. van Kan and F. Watt, "Proton Beam Writing of Passive Waveguides in PMMA," Nucl. Instr. Methods Phys. Res. B 210, 266-271 (2003). [CrossRef]
  19. S.S. Sarkisov, M.J. Curley, E.K. Williams, D. Ila, V.L. Svetchnikov, H.W. Zandberegn, G.A. Zykov, C. Banks, J.-C. Wang, D.B. Poker, and D.K. Hensley, "Nonlinear optical waveguides produced by MeV ion implantation in LiNbO3," Nucl. Instr. Methods Phys. Res. B 166-167, 750-757 (2000). [CrossRef]
  20. S. S. Sarkisov, E.K. Williams, D. Ila, P. Venkateswarlu, and D.B. Poker, "Vanishing optical isolation barrier in double ion-implanted lithium niobate waveguide," Appl. Phys. Lett. 68, 2329-2331 (1996). [CrossRef]
  21. D. Kip, S. Aulkemeyer, and P. Moretti, "Low-loss planar optical waveguides in strontium barium niobate crystals formed by ion-beam implantation," Opt. Lett. 20, 1256-1258 (1995). [CrossRef] [PubMed]
  22. F. Chen, L. Wang, X. L. Wang, K. M. Wang, and Q. M. Lu, "Channel waveguide array in Ce-doped potassium sodium strontium barium niobate crystal fabricated by He+ ion implantation," Appl. Phys. Lett. 89, 191102 (2006). [CrossRef]
  23. T. Pliska, D. Fluck, P. Günter, L. Beckers, and C. Buchal, "Mode propagation losses in He+ ion-implanted KNbO3 waveguides," J. Opt. Soc. Am. B 15, 628-639 (1998). [CrossRef]
  24. P. Mathey, A. Dazzi, P. Jullien, D. Rytz, and P. Moretti, "Guiding properties and nonlinear wave mixing at 854 nm in a rhodium-doped BaTiO3 waveguide implanted with He+ ions," J. Opt. Soc. Am. B 18, 344-347 (2001). [CrossRef]
  25. D. Kip, B. Kemper, I. Nee, R. Pankrath, and P. Moretti, "Photorefractive properties of ion-implanted waveguides in strontium barium niobate crystals," Appl. Phys. B 65, 511-516 (1997). [CrossRef]
  26. J. M. Marx, Z. Tang, O. Eknoyan, H. F. Taylor, and R. R. Neurgaonkar, "Low-loss strain induced optical waveguides in strontium barium niobate (Sr0.6Ba0.4Nb2O6) at 1.3 µm wavelength," Appl. Phys. Lett. 66, 274-276 (1995). [CrossRef]
  27. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, "Optical channel waveguides by proton and carbon implantation in Nd:YAG crystals," Opt. Express 15, 8513-8520 (2007). [CrossRef] [PubMed]
  28. J. F. Ziegler, computer code SRIM, http://www.srim.org.
  29. P. J. Chandler and F. L. Lama, "A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation," Opt. Acta 33, 127-142 (1986). [CrossRef]
  30. J. Shibayama, K. Matsubara, M. Sekiguchi, J. Yamauchi, and H. Nakano, "Efficient nonuniform schemes for paraxial and wide-angle finite-difference beam propagation methods," J. Lightwave Technol. 17, 677-683 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited