OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16737–16747

Frequency upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks

Zhenbo Xu, Xiupu Zhang, and Jianjun Yu  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 16737-16747 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1259 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and analyze a technique of an optical carrier transmitting two RF signals using optical carrier suppression. A single optical Mach-Zehnder modulator is used for both optical carrier suppression and signal modulation, and optical carrier suppression modulation is also used for frequency conversion of RF signals. This work shows that in contrary to the case of an optical carrier transmitting a single RF signal with optical carrier suppression where stronger optical carrier suppression improves the upconverted RF signal, weaker optical carrier suppression is preferred for an optical carrier transmitting two RF signals due to nonlinear distortion because the nonlinear distortion is reduced by using weaker optical carrier suppression. We find that the usable range of optical carrier suppression ratio is from 10 to 18 dB for RF signal upconverted to 20 GHz and beyond, and the best optical carrier suppression ratio is around 10 dB. We verify the concept and analysis with experiment. In experiment, we used two RFs at 6 and 18 GHz transmitting two 750 Mb/s signals. The experiment for the first time demonstrated that an optical carrier can transmit two RF signals using optical carrier suppression and showed that upconverted RF signals are degraded by nonlinear distortion, particularly for upconverted RF signal at 12 GHz, i.e. the RF signal at the lower frequency.

© 2007 Optical Society of America

OCIS Codes
(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems
(060.4080) Fiber optics and optical communications : Modulation
(350.4010) Other areas of optics : Microwaves
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: October 1, 2007
Revised Manuscript: November 27, 2007
Manuscript Accepted: November 27, 2007
Published: December 3, 2007

Zhenbo Xu, Xiupu Zhang, and Jianjun Yu, "Frequency upconversion of multiple RF signals using optical carrier suppression for radio over fiber downlinks," Opt. Express 15, 16737-16747 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, R. Waterhouse, "Investigation of performance enhancement of WDM optical interfaces for millimeter-wave fiber-radio networks," IEEE Photon. Technol. Lett. 19, 843-845 (2007). [CrossRef]
  2. K. Wang, X. Zheng, H. Zhang, Y. Guo, "A radio-over-fiber downstream link employing carrier-suppressed modulation scheme to regenerate and transmit vector signals," IEEE Photon. Technol. Lett. 19, 1365-1367 (2007). [CrossRef]
  3. J. Yu, Z. Jia, T. Wang, G. Chang, "Centralized lightwave radio-over-fiber system with photonic frequency quadrupling for high-frequency millimeter-wave generation," IEEE Photon. Technol. Lett. 19, 1499-1501 (2007). [CrossRef]
  4. J. Yu, Z. Jia, T. Wang, and G. K. Chang, "A novel radio-over-fiber configuration using optical phase modulator to generate an optical mm-wave and centralized lightwave for uplink connection," IEEE Photon. Technol. Lett. 19, 140-142 (2007). [CrossRef]
  5. L. Chen, Y. Shao, X. Lei, H. Wen, and S. Wen, "A novel radio-over-fiber system with wavelength reuse for upstream data connection," IEEE Photon. Technol. Lett. 19, 387-389 (2007). [CrossRef]
  6. C. Lin, J. Chen, P. Peng, C. Peng, W. Peng, B. Chiou, and S. Chi, "Hybrid optical access network integrating fiber-to-the-home and radio-over-fiber systems," IEEE Photon. Technol. Lett. 19, 610-612 (2007). [CrossRef]
  7. M. Garcia Larrode, A. Koonen, J. Vegas Olmos, and E. Verdurmen, "Microwave signal generation and transmission based on optical frequency multiplication with a polarization interferometer," J. Lightwave Technol. 25, 1372-1378 (2007). [CrossRef]
  8. H. Lu, S. Tzeng, Y. Chuang, Y. Chi, and C. Liao, "Bidirectional radio-over-DWDM transport systems based on injection-locked VCSELs and optoelectronic feedback techniques," IEEE Photon. Technol. Lett. 19, 315-317 (2007). [CrossRef]
  9. G. Qi, J. Yao, J. Seregelyi, S. Paquet, C. Belisle, X. Zhang, K. Wu, and R. Kashyap, "Phase-noise analysis of optically generated millimeter-wave signals with external optical modulation techniques," J. Lightwave Technol. 24, 4861-4875 (2006). [CrossRef]
  10. T. Cho and K. Kim, "Effect of third-order intermodulation on radio-over-fiber systems by a dual-electrode Mach-Zehnder modulator with ODSB and OSSB signals," J. Lightwave Technol. 24, 2052-2058 (2006). [CrossRef]
  11. M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightwave Technol. 24, 3341-3352 (2006). [CrossRef]
  12. C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006). [CrossRef]
  13. M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network," IEEE Photon. Technol. Lett. 18, 2311-2313 (2006). [CrossRef]
  14. X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006). [CrossRef]
  15. A. Kaszubowska, L. Hu, and L. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006). [CrossRef]
  16. L. Chen, H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006). [CrossRef]
  17. C. Wu and X. Zhang, "Impact of nonlinear distortion in radio over fiber systems with single-sideband and tandem single-sideband subcarrier modulations," J. Lightwave Technol. 24, 2076-2090 (2006). [CrossRef]
  18. B. Masella and X. Zhang, "A novel single wavelength balanced system for radio over fiber links," IEEE Photon. Technol. Lett. 18, 301-303 (2006). [CrossRef]
  19. K. Wu, J. Yao, X. Zhang, and R. Kashyap, "Millimeter-wave photonic techniques for broadband communication and sensor applications," Proceedings of IEEE LEOS annual meeting 2006, Montreal, pp.270-271.
  20. K. Ikeda, T. Kuri, and K. Kitayama, " Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength," J. Lightwave Technol. 21, 3194-3202 (2003). [CrossRef]
  21. M. Attygalle, C. Lim, and A. Nirmalathas, "Dispersion-tolerant multiple WDM channel millimeter-wave signal generation using a single monolithic mode-locked semiconductor laser," J. Lightwave Technol. 23, 295-303 (2005). [CrossRef]
  22. T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, "Wavelength-division-multiplexed Millimeter-waveband radio-on-fiber system using a supercontinuum light source," J. Lightwave Technol. 24, 404-410 (2006). [CrossRef]
  23. M. Mohamed, B. Hraimel, X. Zhang, and K. Wu, "Efficient photonic generation of millimeter-waves using optical frequency multiplication in radio over fiber systems," Proceedings of IEEE Topic meeting on Microwave Photonics 2007, paper Th.-4.20, Victoria, Canada.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited