OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16800–16807

Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse

M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 16800-16807 (2007)
http://dx.doi.org/10.1364/OE.15.016800


View Full Text Article

Enhanced HTML    Acrobat PDF (424 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To investigate the energy dissipation process after focusing a femtosecond laser pulse inside a zinc borosilicate glass, the time-dependent lens effect in the laser focal region was observed by a transient lens (TrL) method. We found that the TrL signal after 100 ns can be explained clearly by thermal diffusion. By fitting the observed signal, we obtained the phase change due to temperature increase, the initial diameter of the heated volume and the thermal diffusivity. On the basis of the results, the temperature increase and the cooling rate were estimated to be about 1800 K and 1.7×108 Ks-1, respectively. We have also observed the signal change on a 100 ns scale, which can not be explained by the thermal diffusion model. This change was attributed to the relaxation of the heated material.

© 2007 Optical Society of America

OCIS Codes
(140.3390) Lasers and laser optics : Laser materials processing
(320.3980) Ultrafast optics : Microsecond phenomena
(350.5340) Other areas of optics : Photothermal effects
(350.6830) Other areas of optics : Thermal lensing

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: September 13, 2007
Revised Manuscript: November 8, 2007
Manuscript Accepted: November 27, 2007
Published: December 3, 2007

Citation
M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, "Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse," Opt. Express 15, 16800-16807 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16800


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K.M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett 21, 1729-1731 (1996). [CrossRef] [PubMed]
  2. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett 71, 3329-3331 (1997). [CrossRef]
  3. C.B. Schaffer, A. Brodeur, J.F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett 26, 93-95 (2001). [CrossRef]
  4. L. Shah, A.Y. Arai, S. M. Eaton, and P. R. Herman, "Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate," Opt. Express 13, 1999-2006 (2005). [CrossRef] [PubMed]
  5. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, "Optical properties of waveguides written by a 26 MHz stretched cavity Ti:sapphire femtosecond oscillator," Opt. Express 13, 612-620 (2005). [CrossRef] [PubMed]
  6. R. R. Gattass, L. R. Cerami, and E. Mazur "Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates," Opt. Express 14, 5279-5284 (2006). [CrossRef] [PubMed]
  7. S.M. Eaton, H. Zhang, P.R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A.Y. Arai, "Heat accumulation effects in femtosecond laserwritten waveguides with variable repetition rate," Opt. Express 13, 4708-4716 (2005). [CrossRef] [PubMed]
  8. C.B Schaffer, J.F Garcia, and E. Mazur "Bulk heating of transparent materials using a high-repetition-rate femtosecond laser," Appl. Phys. A 76, 351-354 (2003). [CrossRef]
  9. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, "Mechanisms of femtosecond laser nanosurgery of cells and tissues," Appl. Phys. B 81, 1015-1047 (2005). [CrossRef]
  10. L. Genberg, Q. Bao, S. Gracewski, and R. J. D. Miller, "Direct observation of global protein motion in hemoglobin and myoglobin on picosecond time scales," Science 251, 1051-1054 (1991). [CrossRef] [PubMed]
  11. M. Takezaki, N. Hirota, and M. Terazima, " Excited state dynamics of 9,10-diazaphenanthrene studied by the time-resolved transient grating method," J. Phys. Chem. 100, 10015-10020 (1996). [CrossRef]
  12. T. Hara, N. Hirota, and M. Terazima, "New application of the transient grating method to a photochemical reaction: the enthalpy, reaction volume change," J. Phys. Chem. 100, 10194-10200 (1996). [CrossRef]
  13. M. Terazima, and N. Hirota, "Rise profile of the thermal lens signal: contribution of the temperature lens and population lens," J. Chem. Phys 100, 2481-2486 (1994). [CrossRef]
  14. M. Sakakura, and M. Terazima, "Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass," Phys. Rev. B 71, 024113 (2005). [CrossRef]
  15. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, "Observation of pressure wave generated by focusing a femtosecond laser pulse inside a glass," Opt. Express 15, 5674-5686 (2007). [CrossRef] [PubMed]
  16. J.F. Power, "Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory," Appl. Opt. 29, 52-63 (1990). [CrossRef] [PubMed]
  17. S. J. Sheldon, L. V. Knight, and J. M. Thorne, "Laser-induced thermal lens effect - a new theoretical model," Appl. Opt. 21, 1663-1669 (1982). [CrossRef] [PubMed]
  18. T. Yagi, and M. Susa, "Temperature dependence of the refractive index of Al2O3-Na2O-SiO2 melts: role of electronic polarizability of oxygen controlled by network structure," Meta. Mat. Trans. B 34B, 549-554 (2003). [CrossRef]
  19. Glass Technical Data of Corning 0211 http://www.eriesci.com/custom/cor0211-tech.aspx
  20. G. Ghosh, "Model for the thermo-optic coefficients of some standard optical glasses," J. Non-Cryst. Sol. 189, 191-196 (1995). [CrossRef]
  21. A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic Press, 1994), Chap. 12.
  22. J. Yu, P-.F. Paradis, T. Ishikawa, and S. Yoda, "Microstructure and dielectric constant of BaTiO3 synthesized by roller quenching," Jpn. J. Appl. Phys. 43, 8135 (2004). [CrossRef]
  23. R. Bruckner, "Properties and structure of vitreous silica. I," J. Non-Cryst. Sol. 5, 123-175 (1970). [CrossRef]
  24. J. W. Chan, T. R. Huster, S. H. Risbud and D. M. Krol, "Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses," Appl. Phys. A 76, 367-372 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited