OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16818–16827

Terahertz photonic crystal quantum cascade lasers

Hua Zhang, L. Andrea Dunbar, Giacomo Scalari, Romuald Houdré, and Jérôme Faist  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 16818-16827 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1852 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We combine photonic crystal and quantum cascade band engineering to create an in-plane laser at terahertz frequency. We demonstrate that such photonic crystal lasers strongly improve the performances of terahertz quantum cascade material in terms of threshold current, waveguide losses, emission mode selection, tunability and maximum operation temperature. The laser operates in a slow-light regime between the M saddle point and K band-edge in reciprocal lattice. Coarse frequency control of half of a terahertz is achieved by lithographically tuning the photonic crystal period. Thanks to field assisted gain shift and cavity pulling, the single mode emission is continuously tuned over 30 GHz.

© 2007 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

Original Manuscript: October 29, 2007
Revised Manuscript: November 29, 2007
Manuscript Accepted: November 29, 2007
Published: December 4, 2007

Hua Zhang, L. Andrea Dunbar, Giacomo Scalari, Romuald Houdré, and Jérôme Faist, "Terahertz photonic crystal quantum cascade lasers," Opt. Express 15, 16818-16827 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser," Science 264, 553-556 (1994). [CrossRef] [PubMed]
  2. B. S. Williams, "Terahertz quantum-cascade lasers," Nat. Photonics 1, 517-525 (2007). [CrossRef]
  3. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, "Terahertz semiconductor-heterostructure laser," Nature 417, 156-159 (2002). [CrossRef] [PubMed]
  4. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, "Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode," Opt. Express 13, 3331-3339 (2005). [CrossRef] [PubMed]
  5. L. Mahler, R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, D. A. Ritchie, and A. G. Davies, "Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators," Appl. Phys. Lett. 84, 5446-5448 (2004). [CrossRef]
  6. L. Ajili, J. Faist, H. Beere, D. Ritchie, G. Davies, and E. Linfield, "Loss-coupled distributed feedback far-infrared quantum cascade lasers," Electron. Lett. 41, 419-421 (2005). [CrossRef]
  7. S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, "Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides," Opt. Express 15,113-128 (2007). [CrossRef] [PubMed]
  8. O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, J. H. Xu, A. Tredicucci, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamosiunas, "Surface plasmon photonic structures in terahertz quantum cascade lasers," Opt. Express 14, 5335-5345 (2006). [CrossRef] [PubMed]
  9. L. A. Dunbar, R. Houdre, G. Scalari, L. Sirigu, M. Giovannini, and J. Faist, "Small optical volume terahertz emitting microdisk quantum cascade lasers," Appl. Phys. Lett. 90, 141114 (2007). [CrossRef]
  10. D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, and B. L. Miao, "Photonic crystal structures and applications: Perspective, overview, and development," IEEE J. Sel. Top. Quantum Electron. 12, 1416-1437 (2006). [CrossRef]
  11. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  12. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, "Electrically driven single-cell photonic crystal laser," Science 305, 1444-1447 (2004). [CrossRef] [PubMed]
  13. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, "Quantum cascade surface-emitting photonic crystal laser," Science 302, 1374-1377 (2003). [CrossRef] [PubMed]
  14. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The Photonic Band-Edge Laser - a New Approach to Gain Enhancement," J. Appl. Phys. 75, 1896-1899 (1994). [CrossRef]
  15. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999). [CrossRef]
  16. H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, "Very-low-threshold photonic band-edge lasers from free-standing triangular photonic crystal slabs," Appl. Phys. Lett. 80, 3476-3478 (2002). [CrossRef]
  17. M. Bahriz, V. Moreau, R. Colombelli, O. Crisafulli, and O. Painter, "Design of mid-IR and THz quantum cascade laser cavities with complete TM photonic bandgap," Opt. Express 15, 5948-5965 (2007). [CrossRef] [PubMed]
  18. K. Inoue, M. Sasada, J. Kawamata, K. Sakoda, and J. W. Haus, "A two-dimensional photonic crystal laser," Jpn. J. Appl. Phys. 38, L157-L159 (1999). [CrossRef]
  19. M. Ibanescu, E. J. Reed, and J. D. Joannopoulos, "Enhanced photonic band-gap confinement via van hove saddle point singularities," Phys. Rev. Lett. 96, 033904 (2006). [CrossRef] [PubMed]
  20. S. Nojima, "Optical-gain enhancement in two-dimensional active photonic crystals," J. Appl. Phys. 90, 545-551 (2001). [CrossRef]
  21. L. A. Dunbar, V. Moreau, R. Ferrini, R. Houdre, L. Sirigu, G. Scalari, M. Giovannini, N. Hoyler, and J. Faist, "Design, fabrication and optical characterisation of quantum cascade lasers at terahertz frequencies using photonic crystal reflectors," Opt. Express 13, 8960-8968 (2005). [CrossRef] [PubMed]
  22. A. Benz, G. Fasching, C. Deutsch, A. M. Andrews, K. Unterrainer, P. Klang, W. Schrenk, and G. Strasser, "Terahertz photonic crystal resonators in double-metal waveguides," Opt. Express 15, 12418-12424 (2007). [CrossRef] [PubMed]
  23. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at lambda approximate to 100 μm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003). [CrossRef]
  24. S. Kohen, B. S. Williams, and Q. Hu, "Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators," J. Appl. Phys. 97, 053106 (2005). [CrossRef]
  25. G. Scalari, N. Hoyler, M. Giovannini, and J. Faist, "Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction," Appl. Phys. Lett. 86, 181101 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited