OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16852–16859

Electric field enhancing properties of the V-shaped optical resonant antennas

Jing Yang, Jiasen Zhang, Xiaofei Wu, and Qihuang Gong  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 16852-16859 (2007)
http://dx.doi.org/10.1364/OE.15.016852


View Full Text Article

Enhanced HTML    Acrobat PDF (180 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The electric field enhancing properties of the V-shaped optical resonant antenna are studied by using finite-difference time-domain method. Both dipolar and quadrupolar modes can be effectively excited and strong electric field enhancement in the gap of the V-shaped antenna is found. Compared with full-wave dipole antenna, the V-shaped antenna has a greater electric field enhancement, which can be attributed to the higher radiation directivity and the smaller curvature radius of the antenna arms. The more asymmetrical structure also contributes to the efficient quadrupolar excitation. The electric field enhancement of the V-shaped antenna has different dependences on the open angle of the V-shaped antenna for the dipolar and quadrupolar excitation. We obtained stronger electric field enhancing properties by using V-shaped bow-tie antennas, especially for the quadrupolar excitation. The V-shaped antenna and the bow-tie antenna can realize strongly localized and enhanced field and thus are well suitable for the use of near-field optics applications.

© 2007 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 29, 2007
Revised Manuscript: December 1, 2007
Manuscript Accepted: December 3, 2007
Published: December 4, 2007

Citation
Jiasen Zhang, Jing Yang, Xiaofei Wu, and Qihuang Gong, "Electric field enhancing properties of the V-shaped optical resonant antennas," Opt. Express 15, 16852-16859 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16852


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Hartschuh, E. J. Sanchez, X. S. Xie and L. Novotny, "High-resolution near-field Raman microscopy of single-walled carbon nanotubes," Phys. Rev. Lett. 90, 095503-1-095503-4 (2003). [CrossRef]
  2. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein and R. P. Van Duyne, "A localized Surface Plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004). [CrossRef]
  3. L. Novotny, R. X. Bian and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett. 79, 645-648 (1997). [CrossRef]
  4. E. Cubukcu, E. A. Kort, K. B. Crozier and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120-1-093120-3 (2006). [CrossRef]
  5. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, "A quantum dot single-photon turnstile device," Science 290, 2282-2285 (2000). [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard and J. M. Hyam, "Waveguiding in Surface Plasmon Polariton Band Gap Structures," Phys. Rev. Lett. 86, 3008-3011 (2001). [CrossRef] [PubMed]
  7. K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003). [CrossRef]
  8. D. W. Pohl, "Near field optics seen as an antenna problem," in Near-field optics: principles and applications: the second Asia-Pacific Workshop on Near Field Optics, X. Zhu and M. Ohtsu, ed., (World Scientific, Singapore, 2000), pp. 9-21.
  9. J. J. Greffet, "Nanoantennas for light emission," Science 308, 1561-1563 (2005). [CrossRef] [PubMed]
  10. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht and D. W. Pohl, "Resonant optical antennas," Science 308, 1607-1609 (2005). [CrossRef] [PubMed]
  11. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino and W. E. Moerner, "Gap-dependent optical coupling of single "bowtie" nanoantennas resonant in the visible," Nano Lett. 4, 957-961 (2004). [CrossRef]
  12. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino and W. E. Moerner, "Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas" Phys. Rev. Lett.  94, 017402-1-017402-4 (2005). [CrossRef]
  13. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino and W. E. Moerner, "Toward nanometer-scale optical photolithography: utilizing the near-field of bow-tie optical nanoantennas," Nano Lett. 6, 355-360 (2006). [CrossRef] [PubMed]
  14. L. Wang, S. M. Uppuluri, E. X. Jin and X. F. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361-364 (2006). [CrossRef] [PubMed]
  15. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett.  95, 017402-1-017402-4 (2005). [CrossRef]
  16. J. N. Farahani, H. J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser and B. Hecht, "Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy," Nanotechology 18, 125506-1-125506-4 (2005).
  17. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers and N. F. V. Hulst, Nano Lett. "λ/4 Resonance of an optical monopole antenna probed by single molecule fluorescence," Nano Lett. 7, 28-33 (2007). [CrossRef] [PubMed]
  18. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B  71, 235420-1-235420-13 (2005). [CrossRef]
  19. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B  68, 155427-1-155427-4 (2003). [CrossRef]
  20. I. Romero, J. Aizpurua, G. W. Bryant and F. J. Garcia de Abajo, "Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers," Opt. Express 14, 9988-9999 (2006). [CrossRef] [PubMed]
  21. M. A. Suarez, T. Grosjean, D. Charraut and D. Courjon, "Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications," Opt. Commun. 270, 447-454 (2007). [CrossRef]
  22. K. S. Kunz, R. J. Luebbers, The Finite Difference Time Domain Method for Electrodynamics, CRC Press, Florida, 1998.
  23. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Second Edition), Wiley, New York, 1995.
  24. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802-1-266802-4 (2007). [CrossRef]
  25. A. V. Goncharenko, H.-C. Chang, J.-K. Wang, "Electric near-field enhancing properties of a finite-size metal conical nano-tip," Ultramicroscopy 107, 151-157 (2007). [CrossRef]
  26. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B  72, 165409-1-165409-6 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited