OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16886–16895

All silicon infrared photodiodes: photo response and effects of processing temperature

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Kärtner, and T. M. Lyszczarz  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 16886-16895 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1076 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



CMOS compatible infrared waveguide Si photodiodes are made responsive from 1100 to 1750 nm by Si+ implantation and annealing. This article compares diodes fabricated using two annealing temperatures, 300 and 475 °C. 0.25-mm-long diodes annealed to 300 °C have a response to 1539 nm radiation of 0.1 A W-1 at a reverse bias of 5 V and 1.2 A W-1 at 20 V. 3-mm-long diodes processed to 475 °C exhibited two states, L1 and L2, with photo responses of 0.3 ±0.1 A W-1 at 5 V and 0.7 ±0.2 A W-1 at 20 V for the L1 state and 0.5 ±0.2 A W-1 at 5 V and 4 to 20 A W-1 at 20 V for the L2 state. The diodes can be switched between L1 and L2. The bandwidths vary from 10 to 20 GHz. These diodes will generate electrical power from the incident radiation with efficiencies from 4 to 10 %.

© 2007 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.5170) Optical devices : Photodiodes
(230.7370) Optical devices : Waveguides

ToC Category:
Optical Devices

Original Manuscript: August 31, 2007
Revised Manuscript: October 12, 2007
Manuscript Accepted: October 20, 2007
Published: December 4, 2007

M. W. Geis, S. J. Spector, M. E. Grein, R. J. Schulein, J. U. Yoon, D. M. Lennon, C. M. Wynn, S. T. Palmacci, F. Gan, F. X. Käertner, and T. M. Lyszczarz, "All silicon infrared photodiodes: photo response and effects of processing temperature," Opt. Express 15, 16886-16895 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Y. Fan and A. K. Ramdas,"Infrared Absorption and Photoconductivity in Irradiated Silicon," J. Appl. Phys. 30, 1127-1134 (1959). [CrossRef]
  2. A. Knights, A. House, R. MacNaughton, and F. Hopper, "Optical power monitoring function compatible with single chip integration on silicon-on-insulator," Conference on Optical Fiber Communication, Technical Digest Series 86, 705-706 (2003).
  3. A. P. Knights, J. D. Bradley, S. H. Gou, and P. E. Jessop, "Silicon-on-insulator waveguide photodiode with self-ion-implantation-engineered-enhanced infrared response," J. Vac. Sci. Technol. A 24, 783-786 (2005). [CrossRef]
  4. M. W. Geis, S. J. Spector, M. E. Grein, R.T. Schulein, J. U. Yoon, D. M. Lennon, S. Denault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, "CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band," IEEE Photon. Technol. Lett. 19, 152-154 (2007). [CrossRef]
  5. M. Moll, Ph.D. Thesis, University of Hamburg, DESY-Thesis-1999-040, Dec. 1999, "Radiation Damage in Silicon Particle Detectors," http://mmoll.web.cern.ch/mmoll/publist/publist.htm>.
  6. M. Moll, E. Fretwurst, M. Kuhnke, and G. Lindstrom, "Relation between microscopic defects and microscopic changes in silicon detector properties after hadron irradiation," Nucl. Instrum. and Methods B 186, 100-110 (2002). [CrossRef]
  7. L. J. Cheng, J. C. Corelli, J. W. Corbett, and G. D. Watkins, "1.8-, 3.3-, 3.9-u bands in irradiated silicon: correlation with the divacancy," Phys. Rev. 152, 761-774 (1966). [CrossRef]
  8. J. L. Benton, S. Libertino, P. Kringhoj, D. J. Eaglesham, and J. M. Poate, "Evolution from point extended defects in ion implanted silicon," J. Appl. Phys. 82, 120-125 (1997). [CrossRef]
  9. C. J. Ortiz, P. Pichler, T. Fuhner, F. Cristiano, B. Colombeau, N. E. B. Cowern, and A. Claverie, "A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion-implanted silicon," J. Appl. Phys. 96, 4866-4877 (2004). [CrossRef]
  10. F. Schiettekatte, S. Roorda, R. Poirier, M. O. Fortin, S. Chazel, and R. Heliou, "Direct evidence for 8-interstital-controlled nucleation of extended defects in c-Si," Appl. Phys. Lett. 77, 4322-4324 (2000). [CrossRef]
  11. N. E. B. Cowern, G. Mannino, P. A. Stolk, F. Roozeboom, H. G. Huizing, J. G. M. van Berkum, F. Cristiano, and A. Cleaverie, "Energetics of self-Interstitial clusters in Si," Phys. Rev. Lett. 82, 4460-4463 (1999). [CrossRef]
  12. P. K. Giri, "Photoluminescence signature of silicon interstitial cluster evolution from compact to extended structures in ion-implanted silicon," Semicond. Sci. Technol. 20, 638-644 (2005). [CrossRef]
  13. M. Bruel, "Separation of Silicon wafers by the smart-cut method," Mater. Res. Innovations 3, 9-13 (1999). [CrossRef]
  14. T. K. Liang and H. K. Tsang, "Role of free carriers from two-photon absorption in Raman amplification in silicon-on-insulator waveguides," Appl. Phys. Lett. 84, 2745-2747 (2004). [CrossRef]
  15. M. Ley and Z. T. Kuznick, "Near-IR improvement of Si photovoltaic conversion by a nanoscale modification," Physica E 14, 255-258 (2002).
  16. P. K. Giri and Y. M. Mohapatra, "Evidence of metastability with athermal ionization from defect clusters in ion-damaged silicon," Phys Rev. B 2, 16561-16565 (2000). [CrossRef]
  17. S. Libertino, S. Coffa, and J. L. Benton, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Phys. Rev. B 63, 195206 (2001). [CrossRef]
  18. P. Dolgolenko, P. G. Litovchenko, M. D. Varentsov, G. P. Gaidar, and A. P. Litovchenko, "Particularities of the formation of radiation defects in silicon with low and high concentration oxygen," Phys. Status Solidi B 243, 1842-1852 (2006). [CrossRef]
  19. S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, "Formation, evolution and annihilation of interstitial clusters in ion implanted Si," Nucl. Instrum. Methods B 148, 247-251 (1999). [CrossRef]
  20. S. Libertino, S. Coffa, C. Spinella, J. L. Benton, and D. Arcifa, "Cluster formation and growth in Si ion implanted c-Si," Mater. Sci. Eng. B 7, 137-142 (2000). [CrossRef]
  21. A. P. Knights and G. H. Hopper, "Effect of ion implantation induced defects on optical attenuation in silicon waveguides," Electr. Lett. 39, 1648-1649 (2003). [CrossRef]
  22. J. E. Carey, C. H. Crouch, M. Shen, and E. Mazur, "Visible and near-infrared responsivity of femtrosecond-laser microstructured silicon photodiodes," Opt. Lett. 30, 1773-11775 (2005). [CrossRef] [PubMed]
  23. F. Raissi and M. M. Far, "Highly sensitive PtSi/porous Si Schottky detectors," IEEE Sensors J. 2, 476-481 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited