OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16896–16908

Single-arm three-wave interferometer for measuring dispersion of short lengths of fiber

Michael A. Galle, Waleed Mohammed, Li Qian, and Peter W. E. Smith  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 16896-16908 (2007)
http://dx.doi.org/10.1364/OE.15.016896


View Full Text Article

Enhanced HTML    Acrobat PDF (208 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a simple fiber-based single-arm spectral interferometer to measure directly the second-order dispersion parameter of short lengths of fiber (<50 cm). The standard deviation of the measured dispersion on a 39.5-cm-long SMF28 fiber is 1×10-4 ps/nm, corresponding to 1% relative error, without employing any curve fitting. Our technique measures the second-order dispersion by examining the envelope of the interference pattern produced by three reflections: two from the facets of the test fiber and one from a mirror placed away from the fiber facet at a distance that introduces the same group delay as the test fiber at the measured wavelength. The operational constraints on system parameters, such as required bandwidth, wavelength resolution, and fiber length, are discussed in detail. Experimental verification of this technique is carried out via comparison of measurements of single mode fiber (SMF28) with published data and via comparison of measurements of a dispersion compensating fiber with those taken using conventional techniques. Moreover, we used this new technique to measure the dispersion coefficient of a 45-cm-long twin-hole fiber over a 70 nm bandwidth. It is the first time dispersion measurement on this specialty fiber is reported.

© 2007 Optical Society of America

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(260.2030) Physical optics : Dispersion

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: September 4, 2007
Revised Manuscript: October 25, 2007
Manuscript Accepted: October 27, 2007
Published: December 4, 2007

Citation
Michael A. Galle, Waleed S. Mohammed, Li Qian, and Peter W. Smith, "Single-arm three-wave interferometer for measuring dispersion of short lengths of fiber," Opt. Express 15, 16896-16908 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-16896


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. H. Wiesenfeld and J. Stone, "Measurement of dispersion using short lengths of an optical fiber and picosecond pulses from semiconductor film lasers," IEEE J. Lightwave Technol. 2, 464-468 (1984). [CrossRef]
  2. L. G. Cohen, "Comparison of single-mode fiber dispersion measurement techniques," IEEE J. Lightwave Technol. 3, 958-966 (1985). [CrossRef]
  3. B. Costa, D. Mazzoni, M. Puleo, E. Vezzoni, "Phase shift technique for the measurement of chromatic dispersion in optical fibers using LEDs," IEEE Trans. Microwave Theory Tech. 82, 1497-1503 (1982). [CrossRef]
  4. Agilent White Paper, "Agilent 86038B photonic dispersion and loss analyzer," (2007) http://cp.literature.agilent.com/litweb/pdf/5989-2325EN.pdf
  5. L. Cherbi, M. Mehenni, and R. Aksas, "Experimental investigation of the modulation phase-shift method for the measure of the chromatic dispersion in a single-mode fiber coiled on a cover spool," Microw. Opt. Technol. Lett. 48, 174-178 (2006). [CrossRef]
  6. P. Merrit, R. P. Tatam, and D.A. Jackson, "Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber," IEEE J. Lightwave Technol. 7, 703-716 (1989). [CrossRef]
  7. R. Cella and W. Wood, "Measurement of chromatic dispersion in erbium doped fiber using low coherence interferometry," in Proceedings of the Sixth Optical Fiber Measurement Conference (OFMC’01), 207-210 (2001).
  8. J. Gehler and W. Spahn, "Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy," Electron. Lett. 36, 338-340 (2000). [CrossRef]
  9. C. Palavicini, Y. Jaouën, G. Debarge, E. Kerrinckx, Y. Quiquempois, M. Douay, C. Lepers, A.-F. Obaton, G. Melin, "Phase-sensitive optical low-coherence reflectometry technique applied to the characterization of photonic crystal fiber properties," Opt. Lett. 30, 361-363 (2005). [CrossRef] [PubMed]
  10. A. Wax, C. Yang, and J. A. Izatt, "Fourier-domain low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 28, 1230-1232 (2003). [CrossRef] [PubMed]
  11. R. K. Hickernell, T. Kazumasa, M. Yamada, M. Shimizu, M. Horiguchi. "Pump-induced dispersion of erbium-doped fiber measured by Fourier-transform spectroscopy," Opt. Lett. 18. 19-21 (1993). [CrossRef] [PubMed]
  12. P. Hlubina, "White-light spectral interferometry to measure intermodal dispersion in two-mode elliptical core optical fibers," Opt. Commun. 218, 283-289 (2003). [CrossRef]
  13. P. Hlubina, T. Martynkien, and W. Urbanczyk, "Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry," Opt. Express 11, 2793-2798 (2003). [PubMed]
  14. J. Tignon, M. V Marquezini, T. Hasch, and D. S. Chemals, "Spectral interferometry of semiconductor nanostructures," IEEE J. Quantum Electron. 35, 510-522 (1999). [CrossRef]
  15. C. D. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling in Fourier transform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000). [CrossRef]
  16. J. Y. Lee and D. Y. Kim, "Versatile chromatic dispwersion measurement of a single mode fiber using spectral white light interferometry," Opt. Express 14, 11608-11615 (2006). [CrossRef] [PubMed]
  17. P. Hlubina, M. Szpulak, D. Ciprian, T. Martynkien and W. Urbanczyk, "Measurement of the group dispersion of the fundamental mode of holey fiber by white-light spectral interferometry," Opt. Express 15, 11073-11081 (2006). [CrossRef]
  18. A. B. Vakhtin, K. A. Peterson, W. R. Wood, and D. J. Kane, "Differential spectral interferometry and imaging technique for biomedical applications," Opt. Lett. 28, 1332-1334 (2003). [CrossRef] [PubMed]
  19. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, "Ultra high resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). [CrossRef] [PubMed]
  20. D. Huang, E. A. Swang, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fugimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  21. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  22. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002). [CrossRef]
  23. G. Hausler and M. W. Lindner, "Coherence radar and spectral radar - new tools for dermatological diagnosis," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  24. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995). [CrossRef]
  25. Andrei B. Vakhtin, Daniel J. Kane, William R. Wood, and Kirsten A. Peterson. "Common-path interferometer for frequency-domain optical coherence tomography," Appl. Opt. 42, 6953-6958 (2003). [CrossRef] [PubMed]
  26. U. Sharma, N. M. Fried, J. U. Kang, "All-fiber common-path optical coherence tomography: sensitivity optimization and system analysis," IEEE J. Sel. Top. Quantum Electron. 11, 799-805 (2005). [CrossRef]
  27. Corning Inc., "Corning SMF-28TM optical fiber product information", PI1036, (2002) www.corning.com/opticalfiber
  28. P. Blazkiewicz, W. Xu, D. Wong, S. Fleming, and T. Ryan, "Modification of thermal poling evolution using novel twin-hole fibers," IEEE J. Lightwave Technol. 19, 1149-1154 (2001). [CrossRef]
  29. P. G. Kazansky, L. Dong, and P. S. J. Russell, "High second-order nonlinearities in poled silicate fibers," Opt. Lett. 19, 701-703 (1994). [CrossRef] [PubMed]
  30. M. Fokine, L. E. Nilsson, Ã. Claesson, D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, "Integrated fiber Mach-Zehnder interferometer for electro-optic switching," Opt. Lett. 27, 1643-1645 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited