OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 16986–17000

Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals

Peter Bermel, Chiyan Luo, Lirong Zeng, Lionel C. Kimerling, and John D. Joannopoulos  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 16986-17000 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (296 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Most photovoltaic (solar) cells are made from crystalline silicon (c-Si), which has an indirect band gap. This gives rise to weak absorption of one-third of usable solar photons. Therefore, improved light trapping schemes are needed, particularly for c-Si thin film solar cells. Here, a photonic crystal-based light-trapping approach is analyzed and compared to previous approaches. For a solar cell made of a 2 µm thin film of c-Si and a 6 bilayer distributed Bragg reflector (DBR) in the back, power generation can be enhanced by a relative amount of 24.0% by adding a 1D grating, 26.3% by replacing the DBR with a six-period triangular photonic crystal made of air holes in silicon, 31.3% by a DBR plus 2D grating, and 26.5% by replacing it with an eight-period inverse opal photonic crystal.

© 2007 Optical Society of America

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: September 27, 2007
Revised Manuscript: November 30, 2007
Manuscript Accepted: December 3, 2007
Published: December 5, 2007

Peter Bermel, Chiyan Luo, Lirong Zeng, Lionel C. Kimerling, and John D. Joannopoulos, "Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals," Opt. Express 15, 16986-17000 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Herzinger, B. Johs, W. McGahan, J. Woollam, and W. Paulson, "Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation," J. Appl. Phys. 83, 3323-3336 (1998). [CrossRef]
  2. ASTMG173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface (ASTM International, West Conshohocken, Pennsylvania, 2005).
  3. A. Rohatgi, E. Weber, and L. C. Kimerling, "Opportunities in silicon photovoltaics and defect control in photovoltaic materials," J. Electron. Mater. 22, 65-72 (1993). [CrossRef]
  4. D. Fischer, S. Dubail, J. Selvan, N. P. Vaucher, R. Platz, C. Hof, U. Kroll, J. Meier, P. Torres, H. Keppner, N. Wyrsch, M. Goetz, A. Shah, and K.-D. Ufert, "The micromorph solar cell: extending a-Si:H technology towards thin film crystalline silicon," Twenty-fifth Photovolt. Spec. Conf. p. 1053 (1996). [CrossRef]
  5. R. Brendel, Thin-Film Crystalline Silicon Solar Cells (Wiley-VCH, Weinheim, Germany, 2003). [CrossRef]
  6. K. Wada, L. C. Kimerling, and N. Toyoda, "Back reflector of solar cells," (June 15, 2004). US patent no. 6750393.
  7. E. Yablonovitch and G. Cody, "Intensity enhancement in textured optical sheets for solar cells," IEEE Trans. Electron Devices ED-29, 300-305 (1982). [CrossRef]
  8. R. Brendel, M. Hirsch, R. Plieninger, and J. Werner, "Quantum efficiency analysis of thin-layer silicon solar cells with back surface fields and optical confinement," IEEE Trans. Electron Devices 43, 1104-1113 (1996). [CrossRef]
  9. P. Campbell and M. A. Green, "Light trapping properties of pyramidally textured surfaces," J. Appl. Phys. 62, 243-249 (1987). [CrossRef]
  10. L. Feitknecht, J. Steinhauser, R. Schluchter, S. Fay, D. Domine, E. Vallat-Sauvin, F. Meillaud, C. Ballif, and A. Shah, "Investigations on fill-factor drop of microcrystalline silicon p-i-n solar cells deposited onto highly surface-textured ZnO substrates," in Tech. Digest PVSEC-15 (Shanghai, China, 2005).
  11. H. Bender, J. Szlufcik, H. Nussbaumer, G. Palmers, O. Evrard, J. Nijs, R. Mertens, E. Bucher, and G. Willeke, "Polycrystalline silicon solar cells with a mechanically formed texturization," Appl. Phys. Lett. 62, 2941-2943 (1993). [CrossRef]
  12. J. Gee, "Optically enhanced absorption in thin silicon layers using photonic crystals," in Twenty-Ninth IEEE Photovolt. Spec. Conf., pp. 150-153 (2002).
  13. L. Zeng, Y. Yi, C.-Y. Hong, X. Duan, and L. C. Kimerling, "New Light Trapping in Thin Film Solar Cells Using Textured Photonic Crystals," in Mater. Res. Soc. Symp. Proc., (Materials Research Society, Boston, MA, 2005) Vol. 862.
  14. L. Zeng, P. Bermel, Y. Yi, N. Feng, C.-Y. Hong, X. Duan, J. D. Joannopoulos, and L. C. Kimerling, "Optimization of textured photonic crystal backside reflectors for silicon thin-film solar cells," in Mater. Res. Soc. Symp. Proc., (Materials Research Society, Boston, MA, 2006) Vol. 974E.
  15. L. Zeng, Y. Yi, C.-Y. Hong, J. Liu, N. ning Feng, X. Duan, L. C. Kimerling, and B. Alamariu, "Efficiency enhancement in Si solar cells by textured photonic crystal back reflector," Appl. Phys. Lett. 89, 111,111 (2006). [CrossRef]
  16. N.-N. Feng, J. Michel, L. Zeng, J. Liu, C.-Y. Hong, L. C. Kimerling, and X. Duan, "Design of highly efficient light-trapping structures for thin-film crystalline silicon solar cells," IEEE Trans. Electron Devices 54, 1926-1933 (2007). [CrossRef]
  17. S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, "Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals," J. Am. Chem. Soc. 125, 6306-6310 (2003). [CrossRef] [PubMed]
  18. A. Mihi and H. Miguez, "Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells," J. Phys. Chem. B 109, 15,968-15,976 (2005). [CrossRef]
  19. C. Huisman, J. Schoonman, and A. Goossens, "The application of inverse titania opals in nanostructured solar cells," Solar Energy Materials and Solar Cells 85, 115-124 (2005).
  20. S. Pillai, K. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. A. Green, "Enhanced emission from Si-based light-emitting diodes using surface plasmons," Appl. Phys. Lett. 88, 161,102 (2006). [CrossRef]
  21. P. Sheng, A. Bloch, and R. Stepleman, "Wavelength-selective absorption enhancement in thin-film solar cells," Appl. Phys. Lett. 43, 579-581 (1983). [CrossRef]
  22. R. H. Morf and H. Kiess, "Submicron gratings for light trapping in silicon solar cells: a theoretical study," in Proc. Ninth Internat. Conf. Photovolt. Solar Energy, W. Palz, ed., pp. 313-315 (Commission of the European Communities, Brussels, 1989).
  23. H. Kiess and R. H. Morf, "Light trapping in solar cells and determination of the absorbed energy by calorimetry," Proc. SPIE 1149, 124-129 (1989).
  24. M. Gale, B. Curtis, H. Kiess, and R. H. Morf, "Design and fabrication of submicron grating structures for light trapping in silicon solar cells," Proc. SPIE 1272, 60-66 (1990). [CrossRef]
  25. C. Heine and R. H. Morf, "Submicrometer gratings for solar energy applications," Appl. Opt. 34, 2476-2482 (1995). [CrossRef] [PubMed]
  26. S. H. Zaidi, J. M. Gee, and D. S. Ruby, "Diifraction grating structures in solar cells," in Twenty-Eighth IEEE Photovolt. Spec. Conf., pp. 395-398 (2000).
  27. C. Eisele, C. Nebel, and M. Stutzmann, "Periodic light coupler gratings in amorphous thin film solar cells," J. Appl. Phys. 89, 7722-7726 (2001). [CrossRef]
  28. S. H. Zaidi, R. Marquadt, B. Minhas, and J. Tringe, "Deeply etched grating structures for enhanced absorption in thin c-Si solar cells," in Twenty-Ninth IEEE Photovolt. Spec. Conf., p. 1290 (2002).
  29. F. Llopis and I. Tobias, "The role of rear surface in thin silicon solar cells," Sol. Energy Mater. Sol. Cells 87, 481-492 (2005). [CrossRef]
  30. T. Ogawa and Y. Kanemitsu, eds., Optical Properties of Low-Dimensional Materials (World Scientific, Singapore, 1995).
  31. J. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, Princeton, NJ, 1995).
  32. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt Saunders, Philadelphia, PA, 1976).
  33. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10,096-R10,099 (1998). [CrossRef]
  34. T. Tiedje, E. Yablonovitch, G. Cody, and B. Brooks, "Limiting efficiency of silicon solar cells," IEEE Trans. Electron Devices 31, 711-716 (1984). [CrossRef]
  35. D. Whittaker and I. Culshaw, "Scattering-matrix treatment of patterned multilayer photonic structures," Phys. Rev. B 60, 2610-2618 (1999). [CrossRef]
  36. K. S. Yee, "Numerical solution of inital boundary value problems involving maxwell’s equations in isotropic media," IEEE Trans. Attennas Propag. AP-14, 302-307 (1966).
  37. J. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys. 114, 185-200 (1994). [CrossRef]
  38. W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," J. Appl. Phys. 32, 510 (1961). [CrossRef]
  39. C. Henry, "Limiting efficiencies of ideal single and multiple energy gap terrestial solar cells," J. Appl. Phys. 51, 4494-4500 (1980). [CrossRef]
  40. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173-190 (2001). [CrossRef] [PubMed]
  41. J. Jackson, Classical Electrodynamics (Wiley, New York, 1999).
  42. E. D. Palik, ed., Handbook of Optical Constants of Solids, vol. 1 (Academic Press, San Diego, CA, 1998).
  43. S.-Y. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998). [CrossRef]
  44. Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, "On-chip natural assembly of silicon photonic bandgap crystals," Nature 414, 289-293 (2001). [CrossRef] [PubMed]
  45. S. Takahashi, M. Okano, M. Imada, and S. Noda, "Three-dimensional photonic crystals based on double-angled etching and wafer-fusion techniques," Appl. Phys. Lett. 89, 123,106 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited