OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 17172–17205

Cavity Opto-Mechanics

T.J. Kippenberg and K.J. Vahala  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 17172-17205 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1316 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The coupling of mechanical and optical degrees of freedom via radiation pressure has been a subject of early research in the context of gravitational wave detection. Recent experimental advances have allowed studying for the first time the modifications of mechanical dynamics provided by radiation pressure. This paper reviews the consequences of back-action of light confined in whispering-gallery dielectric micro-cavities, and presents a unified treatment of its two manifestations: notably the parametric instability (mechanical amplification and oscillation) and radiation pressure back-action cooling. Parametric instability offers a novel “photonic clock” which is driven purely by the pressure of light. In contrast, radiation pressure cooling can surpass existing cryogenic technologies and offers cooling to phonon occupancies below unity and provides a route towards cavity Quantum Optomechanics

© 2007 Optical Society of America

OCIS Codes
(230.1040) Optical devices : Acousto-optical devices
(140.3945) Lasers and laser optics : Microcavities

ToC Category:

Original Manuscript: October 8, 2007
Revised Manuscript: December 7, 2007
Manuscript Accepted: December 7, 2007
Published: December 10, 2007

Virtual Issues
Physics and Applications of Microresonators (2007) Optics Express

Tobias J. Kippenberg and Kerry J. Vahala, "Cavity Opto-Mechanics," Opt. Express 15, 17172-17205 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, "Optical microcavities," Nature 424(6950), 839-846 (2003). [CrossRef]
  2. H. G. Craighead, "Nanoelectromechanical systems," Science 290(5496), 1532-1535 (2000). [CrossRef]
  3. T.W. Hansch and A. L. Schawlow, "Cooling of Gases by Laser Radiation," Optics Communications 13(1), 68-69 (1975). [CrossRef]
  4. D. J. Wineland, R. E. Drullinger, and F. L. Walls, "Radiation-Pressure Cooling of Bound Resonant Absorbers," Physical Review Letters 40(25), 1639-1642 (1978). [CrossRef]
  5. S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, "3-Dimensional Viscous Confinement and Cooling of Atoms by Resonance Radiation Pressure," Physical Review Letters 55(1), 48-51 (1985). [CrossRef]
  6. S. Stenholm, "The Semiclassical Theory of Laser Cooling," Reviews of Modern Physics 58(3), 699-739 (1986). [CrossRef]
  7. C. M. Caves, "Quantum-Mechanical Noise in an Interferometer," Physical Review D 23(8), 1693-1708 (1981). [CrossRef]
  8. K. Jacobs, I. Tittonen, H. M. Wiseman, and S. Schiller, "Quantum noise in the position measurement of a cavity mirror undergoing Brownian motion," Physical Review A 60(1), 538-548 (1999). [CrossRef]
  9. I. Tittonen, G. Breitenbach, T. Kalkbrenner, T. Muller, R. Conradt, S. Schiller, E. Steinsland, N. Blanc, and N. F. de Rooij, "Interferometric measurements of the position of a macroscopic body: Towards observation of quantum limits," Physical Review A 59(2), 1038-1044 (1999). [CrossRef]
  10. V. B. Braginsky, Measurement of Weak Forces in Physics Experiments (University of Chicago Press, Chicago, 1977).
  11. V. B. Braginsky and F. Khalili, Quantum Measurement (Cambridge University Press, 1992). [CrossRef]
  12. S. Mancini and P. Tombesi, "Quantum-Noise Reduction by Radiation Pressure," Physical Review A 49(5), 4055-4065 (1994). [CrossRef]
  13. S. Bose, K. Jacobs, and P. L. Knight, "Preparation of nonclassical states in cavities with a moving mirror," Physical Review A 56(5), 4175-4186 (1997). [CrossRef]
  14. L. Tian and P. Zoller, "Coupled ion-nanomechanical systems," Physical Review Letters 93(26), 266,403 (2004).
  15. M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, "Approaching the quantum limit of a nanomechanical resonator," Science 304(5667), 74-77 (2004). [CrossRef]
  16. A. Naik, O. Buu, M. D. LaHaye, A. D. Armour, A. A. Clerk, M. P. Blencowe, and K. C. Schwab, "Cooling a nanomechanical resonator with quantum back-action," Nature 443(7108), 193-196 (2006). [CrossRef]
  17. I. Wilson-Rae, P. Zoller, and A. Imamoglu, "Laser cooling of a nanomechanical resonator mode to its quantum ground state," Physical Review Letters 92(7), 075,507 (2004).
  18. K. Brown, J. Britton, R. Epstein, J. Chiaverini, D. Leibfried, and D. Wineland, "Passive Cooling of a Micromechanical Oscillator with a Resonant Electric Circuit," Physical Review Letters 99, 137,205 (2007). [CrossRef]
  19. A. Dorsel, J. D. McCullen, P. Meystre, E. Vignes, and H. Walther, "Optical Bistability and Mirror Confinement Induced by Radiation Pressure," Physical Review Letters 51(17), 1550-1553 (1983). [CrossRef]
  20. B. S. Sheard, M. B. Gray, C. M. Mow-Lowry, D. E. McClelland, and S. E. Whitcomb, "Observation and characterization of an optical spring," Physical Review A 69(5) (2004).
  21. V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, "Parametric oscillatory instability in Fabry-Perot interferometer," Physics Letters A 287(5-6), 331-338 (2001). [CrossRef]
  22. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, "Analysis of Radiation-Pressure Induced Mechanical Oscillation of an Optical Microcavity," Physical Review Letters 95, 033,901 (2005). [CrossRef]
  23. H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. J. Vahala, "Radiation-pressure-driven micro-mechanical oscillator," Optics Express 13(14), 5293-5301 (2005). [CrossRef]
  24. T. Carmon, H. Rokhsari, L. Yang, T. J. Kippenberg, and K. J. Vahala, "Temporal behavior of radiation-pressureinduced vibrations of an optical microcavity phonon mode," Physical Review Letters 94(22) (2005).
  25. V. B. Braginsky and S. P. Vyatchanin, "Low quantum noise tranquilizer for Fabry-Perot interferometer," Physics Letters A 293(5-6), 228-234 (2002). [CrossRef]
  26. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, "Radiation-pressure cooling and optomechanical instability of a micromirror," Nature 444(7115), 71-74 (2006). [CrossRef]
  27. S. Gigan, H. R. Bohm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bauerle, M. Aspelmeyer, and A. Zeilinger, "Self-cooling of a micromirror by radiation pressure," Nature 444(7115), 67-70 (2006). [CrossRef]
  28. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, "Radiation pressure cooling of a micromechanical oscillator using dynamical backaction," Physical Review Letters 97(24), 243,905 (2006).
  29. T. Corbitt, Y. B. Chen, E. Innerhofer, H. Muller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, "An all-optical trap for a gram-scale mirror," Physical Review Letters 98, 150,802 (2007). [CrossRef]
  30. J. D. Thompson, B. M. Zwickl, A. M. Yarich, F. Marquardt, S. M. Girvin, and J. Harris, "Strong dispersive coupling of a high finesse cavity to a micromechanical membrane," arXiv:0707.1724 (2007).
  31. S. Mancini, D. Vitali, and P. Tombesi, "Optomechanical cooling of a macroscopic oscillator by homodyne feedback," Physical Review Letters 80(4), 688-691 (1998). [CrossRef]
  32. P. F. Cohadon, A. Heidmann, and M. Pinard, "Cooling of a mirror by radiation pressure," Physical Review Letters 83(16), 3174-3177 (1999). [CrossRef]
  33. S. Vandermeer, "Stochastic Cooling and the Accumulation of Antiprotons," Reviews of Modern Physics 57(3), 689-697 (1985). [CrossRef]
  34. D. Kleckner and D. Bouwmeester, "Sub-kelvin optical cooling of a micromechanical resonator," Nature 444(7115), 75-78 (2006). [CrossRef]
  35. M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, "Feedback cooling of a cantilever’s fundamental mode below 5 mK," Physical Review Letters 99(1) (2007).
  36. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, "High-sensitivity optical monitoring of a micromechanical resonator with a quantumlimited optomechanical sensor," Physical Review Letters 97(13), 133,601 (2006).
  37. V. Giovannetti, S. Mancini, and P. Tombesi, "Radiation pressure induced Einstein-Podolsky-Rosen paradox," Europhysics Letters 54(5), 559-565 (2001). [CrossRef]
  38. S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, "Entangling macroscopic oscillators exploiting radiation pressure," Physical Review Letters 88(12), 120,401 (2002).
  39. J. M. Courty, A. Heidmann, and M. Pinard, "Quantum locking of mirrors in interferometers," Physical Review Letters 90(8) (2003).
  40. O. Arcizet, T. Briant, A. Heidmann, and M. Pinard, "Beating quantum limits in an optomechanical sensor by cavity detuning," Physical Review A 73(3) (2006).
  41. W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, "Towards quantum superpositions of a mirror," Physical Review Letters 91(13) (2003).
  42. M. Hossein-Zadeh and K. J. Vahala, "Photonic RF Down-Converter Based on Optomechanical Oscillation," (to be published).
  43. M. L. Povinelli, J.M. Johnson,M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, "High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators," Optics Express 13(20), 8286-8295 (2005). [CrossRef]
  44. M. Eichenfeld, C. Michael, R. Perahia, and O. Painter, "Actuation ofMicro-Optomechanical Systems Via Cavity-Enhanced Optical Dipole Forces," Nature Photonics 1(7), 416 (2007). [CrossRef]
  45. K. C. Schwab and M. L. Roukes, "Putting mechanics into quantum mechanics," Physics Today 58(7), 36-42 (2005).
  46. Y. Akahane, T. Asano, B. S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425(6961), 944-947 (2003). [CrossRef]
  47. A. Schliesser, R. Riviere, G. Anetsberger, O. Arcizet, and I. J. Kippenberg, "Demonstration of Resolved Sideband Cooling of a Mechanical Oscillator," http://arxiv.org/abs/0709.4036 (2007).
  48. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, "Quantum Theory of Cavity-Assisted Sideband Cooling of Mechanical Motion," Physical Review Letters 99, 093,902 (2007). [CrossRef]
  49. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, "Theory of Ground State Cooling of a Mechanical Oscillator Using Dynamical Backaction," Physical Review Letters 99, 093,902 (2007). [CrossRef]
  50. C. K. Law, "Interaction between aMovingMirror and Radiation Pressure - a Hamiltonian-Formulation," Physical Review A 51(3), 2537-2541 (1995). [CrossRef]
  51. H. A. Haus, Electromagnetic fields and energy (Prentice Hall, Englewood Cliff, 1989).
  52. M. Pinard, Y. Hadjar, and A. Heidmann, "Effective mass in quantum effects of radiation pressure," European Physical Journal D 7(1), 107-116 (1999).
  53. F. Marquardt, J. Harris, and S. Girvin, "Dynamical Multistability Induced by Radiation Pressure in High-Finesse Micromechanical Optical Cavities," Physical Review Letters 96(103901-1) (2006).
  54. M. Hossein-Zadeh and K. J. Vahala, "Observation of optical spring effect in a microtoroidal optomechanical resonator," Optics Letters 32(12), 1611-1613 (2007). [CrossRef]
  55. K. Karrai, "Photonics - A cooling light breeze," Nature 444(7115), 41-42 (2006). [CrossRef]
  56. V. Vuletic and S. Chu, "Laser cooling of atoms, ions, or molecules by coherent scattering," Physical Review Letters 84(17), 3787-3790 (2000). [CrossRef]
  57. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, "Cavity cooling of a single atom," Nature 428(6978), 50-52 (2004). [CrossRef]
  58. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, "Quality-Factor and Nonlinear Properties of Optical Whispering- Gallery Modes," Physics Letters A 137(7-8), 393-397 (1989). [CrossRef]
  59. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, "Fabrication and coupling to planar high-Q silica disk microcavities," Applied Physics Letters 83(4), 797-799 (2003). [CrossRef]
  60. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421(6926), 925-928 (2003). [CrossRef]
  61. R. Ma, A. Schliesser, P. Del’Haye, A. Dabirian, G. Anetsberger, and T. J. Kippenberg, "Radiation-pressure-driven vibrational modes in ultrahigh-Q silica microspheres," Optics Letters 32(15), 2200-2202 (2007). [CrossRef]
  62. T. Carmon, M. C. Cross, and K. J. Vahala, "Chaotic quivering of micron-scaled on-chip resonators excited by centrifugal optical pressure," Physical Review Letters98(16) (2007). 0031-9007.
  63. T. Carmon and K. J. Vahala, "Modal spectroscopy of optoexcited vibrations of a micron-scale on-chip resonator at greater than 1 GHz frequency," Physical Review Letters 98(12) (2007).
  64. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, "Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics," Physical Review Letters91(4), art. no.-043,902 (2003).
  65. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, "Ultralow-threshold Raman laser using a spherical dielectric microcavity," Nature 415(6872), 621-623 (2002). [CrossRef]
  66. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity," Physical Review Letters 93(8) (2004).
  67. M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, "Characterization of a radiation-pressure-driven micromechanical oscillator," Physical Review A 74(2) (2006).
  68. C. H. Metzger and K. Karrai, "Cavity cooling of a microlever," Nature 432(7020), 1002-1005 (2004). [CrossRef]
  69. T. Carmon, L. Yang, and K. J. Vahala, "Dynamical thermal behavior and thermal self-stability of microcavities," Optics Express 12(20), 4742-4750 (2004). [CrossRef]
  70. G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, "Frequency modulation (FM) spectroscopy," Applied Physics B Lasers and Optics 32(3), 145-152 (1983).
  71. M. Zalalutdinov, A. Zehnder, A. Olkhovets, S. Turner, L. Sekaric, B. Ilic, D. Czaplewski, J. M. Parpia, and H. G. Craighead, "Autoparametric optical drive for micromechanical oscillators," Applied Physics Letters 79(5), 695-697 (2001). [CrossRef]
  72. F. Treussart, V. S. Ilchenko, J. F. Roch, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, "Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium," European Physical Journal D 1(3), 235-238 (1998).
  73. H. Rokhsari and K. J. Vahala, "Observation of Kerr nonlinearity in microcavities at room temperature," Optics Letters 30(4), 427-429 (2005). [CrossRef]
  74. F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, "Laser Cooling to the Zero-Point Energy of Motion," Physical Review Letters 62(4), 403-406 (1989). [CrossRef]
  75. D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, "Generation of nonclassical motional states of a trapped atom," Physical Review Letters 76(11), 1796-1799 (1996). [CrossRef]
  76. C. Monroe, D. M. Meekhof, B. E. King, and D. J. Wineland, "A "Schrodinger cat" superposition state of an atom," Science 272(5265), 1131-1136 (1996). [CrossRef]
  77. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, "Quantum dynamics of single trapped ions," Reviews of Modern Physics 75(1), 281-324 (2003). [CrossRef]
  78. D. J. Wineland and W. M. Itano, "Laser Cooling of Atoms," Physical Review A 20(4), 1521-1540 (1979). [CrossRef]
  79. H. J. Kimble, "Strong interactions of single atoms and photons in cavity QED," Physica Scripta T76, 127-137 (1998). [CrossRef]
  80. V. B. Braginsky, S. E. Strigin, and S. P. Vyatchanin, "Analysis of parametric oscillatory instability in power recycled LIGO interferometer," Physics Letters A 305(3-4), 111-124 (2002). [CrossRef]
  81. T. Corbitt, D. Ottaway, E. Innerhofer, J. Pelc, and N. Mavalvala, "Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity," Physical Review A 74(2) (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited