OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 17283–17290

Polysilicon photonic resonators for large-scale 3D integration of optical networks

Kyle Preston, Bradley Schmidt, and Michal Lipson  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 17283-17290 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (775 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate optical microresonators in polycrystalline silicon with quality factors of 20,000. We also demonstrate polycrystalline resonators vertically coupled to crystalline silicon waveguides. Electrically active photonic structures fabricated in deposited polysilicon layers would enable the large-scale integration of photonics with current CMOS microelectronics.

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.3130) Integrated optics : Integrated optics materials
(230.5750) Optical devices : Resonators

ToC Category:
Rings, Disks, and Other Cavities

Original Manuscript: September 24, 2007
Revised Manuscript: November 5, 2007
Manuscript Accepted: November 6, 2007
Published: December 10, 2007

Virtual Issues
Physics and Applications of Microresonators (2007) Optics Express

Kyle Preston, Bradley Schmidt, and Michal Lipson, "Polysilicon photonic resonators for large-scale 3D integration of optical networks," Opt. Express 15, 17283-17290 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. A. B.  Miller, "Optical interconnects to silicon," IEEE J. Sel. Top. Quantum Electron.  6, 1312−1317 (2000). [CrossRef]
  2. A. Shacham, K. Bergman, and L. P. Carloni, "On the Design of a Photonic Network-on-Chip," in Proceedings of IEEE International Symposium on Networks-on-Chips (IEEE, 2007), pp. 53-64.
  3. M. Lipson, "Guiding, Modulating, and Emitting Light on Silicon-Challenges and Opportunities," J. Lightwave Technol. 23, 4222-4238 (2005). [CrossRef]
  4. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, "High-speed optical modulation based on carrier depletion in a silicon waveguide," Opt. Express 15, 660-668 (2007). [CrossRef] [PubMed]
  5. A. Huang, G. Li, Y. Liang, S. Mirsaidi, A. Narasimha, T. Pinguet, and C. Gunn, "A 10Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13μm SOI CMOS," presented at 2006 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2006.
  6. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005). [CrossRef] [PubMed]
  7. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, "Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Opt. Express 14, 9203-9210 (2006). [CrossRef] [PubMed]
  8. L. Dal Negro, J. H. Yi, L. C. Kimerling, S. Hamel, A. Williamson, and G. Galli, "Light emission from silicon-rich nitride nanostructures," Appl. Phys. Lett. 88, 183103 (2006). [CrossRef]
  9. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon.  1, 65-71 (2007). [CrossRef]
  10. S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nature Photon. 1, 293 - 296 (2007). [CrossRef]
  11. J. M. Fedeli, M. Migette, L. Di Cioccio, L. El Melhaoui, R. Orobtchouk, C. Seassal, P. RojoRomeo, F. Mandorlo, D. Marris-Morini, and L. Vivien, "Incorporation of a photonic layer at the metallization levels of a CMOS circuit," in Proceedings of IEEE International Conference on Group IV Photonics (IEEE, 2006), pp. 200-202.
  12. S. Pae, T. Su, J. P. Denton, and G. W. Neudeck, "Multiple Layers of Silicon-on-Insulator Islands Fabrication by Selective Epitaxial Growth," IEEE Electron Device Lett. 20, 194-196 (1999). [CrossRef]
  13. P. Koonath, T. Indukuri, and B. Jalali, "Monolithic 3-D Silicon Photonics," J. Lightwave Technol. 24, 1796-1804 (2006). [CrossRef]
  14. D. K. Sparacin, R. Sun, A. M. Agarwal, M. A. Beals, J. Michel, L. C. Kimerling, T. J. Conway, A. T. Pomerene, D. N. Carothers, M. J. Grove, D. M. Gill, M. S. Rasras, S. S. Patel, and A. E. White, "Low-Loss Amorphous Silicon Channel Waveguides for Integrated Photonics," in Proceedings of IEEE International Conference on Group IV Photonics (IEEE, 2006), pp. 255-257.
  15. A. Harke, M. Krause, and J. Mueller, "Low-loss singlemode amorphous silicon waveguides," Electron. Lett. 41, 1377-1379 (2005). [CrossRef]
  16. L. L. Kazmerski, Polycrystalline and Amorphous Thin Films and Devices (Academic, 1980).
  17. T. Kamins, Polycrystalline Silicon for Integrated Circuits and Displays, 2nd ed. (Kluwer, 1998). [CrossRef]
  18. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and Jim Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998). [CrossRef]
  19. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  20. L. Liao, "Low Loss Polysilicon Waveguides for Silicon Photonics" (Master's thesis, MIT, 1997).
  21. L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical transmission losses in polycrystalline silicon strip waveguides: effect of waveguide dimensions, thermal treatment, hydrogen passivation, and wavelength," J. Electron. Mater. 29, 1380-1386 (2000). [CrossRef]
  22. P. A. Maki, M. Fritze, D. R. Lim, B. E. Little, S. C. Palmateer, L. C. Kimerling, and H. A. Haus, "High-Q silicon-based microring resonators fabricated using 248 nm optical lithography," in Proceedings of Conference on Lasers and Electro-Optics (IEEE, 2000), pp. 691-692.
  23. B. E.  Little, S. T.  Chu, H. A.  Haus, J.  Foresi, and J. P.  Laine, "Microring resonator channel dropping filters," J. Lightwave Technol.  15, 998-1005 (1997). [CrossRef]
  24. V. R. Almeida, R. R. Panepucci, and M. Lipson, "Nanotaper for compact mode conversion," Opt. Lett. 28, 1302-1304 (2003). [CrossRef] [PubMed]
  25. P.  Rabiei, W. H.  Steier, C.  Zhang, and L. R.  Dalton, "Polymer micro-ring filters and modulators," J. Lightwave Technol.  20, 1968-1975 (2002). [CrossRef]
  26. T. A. Carbone, P. Plourde, and E. Karagiannis, "Correlation of ellipsometric volume fraction to polysilicon grainsize from transmission electron microscopy," in Proceedings of Advanced Semiconductor Manufacturing Conference (IEEE/SEMI, 1999), pp. 359-367.
  27. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. 23, 123-129 (1987). [CrossRef]
  28. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Express 15, 430-436 (2007). [CrossRef] [PubMed]
  29. C. H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, and L. E. Katz, "Low loss Si3N4-SiO2 optical waveguides on Si," Appl. Opt. 26, 2621-2624 (1987). [CrossRef] [PubMed]
  30. M.  Melchiorri, N.  Daldosso, F.  Sbrana, L.  Pavesi, G.  Pucker, C.  Kompocholis, P.  Bellutii, and A.  Lui, "Propagation losses of silicon nitride waveguides in the near-infrared range," Appl. Phys. Lett.  86, 121111 (2005). [CrossRef]
  31. SILVACO International, 4701, Patrick Henry Drive, Blg 1, Santa Clara, California.
  32. D. R. Lim, B. E. Little, K. K. Lee, M. Morse, H. H. Fujimoto, H. A. Haus, and L. C. Kimerling, "Micron-sized channel dropping filters using silicon waveguide devices," Proc. SPIE 3847, 65-71 (1999). [CrossRef]
  33. T. Sameshima, S. Usui, and M. Sekiya, "XeCl Excimer laser annealing used in the fabrication of poly-Si TFT's," IEEE Electron Device Lett. 7, 276-278 (1986). [CrossRef]
  34. R. S. Sposili and J. S. Im, "Sequential lateral solidification of thin silicon films on SiO2," Appl. Phys. Lett. 69, 2864-2866 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited