OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 17305–17312

Improvement of thermal properties of ultra-high Q silicon microdisk resonators

Mohammad Soltani, Qing Li, Siva Yegnanarayanan, and Ali Adibi  »View Author Affiliations


Optics Express, Vol. 15, Issue 25, pp. 17305-17312 (2007)
http://dx.doi.org/10.1364/OE.15.017305


View Full Text Article

Enhanced HTML    Acrobat PDF (377 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a detailed study of the thermal properties of ultra-high quality factor (Q) microdisk resonators on silicon-on-insulator (SOI) platforms. We show that by preserving the buried oxide layer underneath the Si resonator and by adding a thin Si pedestal layer at the interface between the resonator and the oxide layer we can increase the overall thermal conductivity of the structure while the ultra-high Q property is preserved. This allows higher field intensities inside the resonator which are crucial for nonlinear optics applications.

© 2007 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Rings, Disks, and Other Cavities

History
Original Manuscript: October 16, 2007
Revised Manuscript: November 17, 2007
Manuscript Accepted: November 17, 2007
Published: December 10, 2007

Virtual Issues
Physics and Applications of Microresonators (2007) Optics Express

Citation
Mohammad Soltani, Qing Li, Siva Yegnanarayanan, and Ali Adibi, "Improvement of thermal properties of ultra-high Q silicon microdisk resonators," Opt. Express 15, 17305-17312 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-25-17305


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ=1.3 and 1.6μm," IEEE J. Quantum Electron. 22,873-879 (1986). [CrossRef]
  2. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, (John Wiley, West Sussex, 2004). [CrossRef]
  3. L. Pavesi and D. J. Lockwood, Silicon Photonics, (Springer-verlag, New York, 2004).
  4. M. Lipson, "Guiding, modulating and emitting light on silicon-challenges and opportunities," J. Lightwave Technol. 23, 4222-4238 (2005). [CrossRef]
  5. S. F. Preble, Q. Xu, B. S. Schmidt, and M. Lipson, "Ultrafast all-optical modulation on a silicon chip," Opt. Lett. 30,2891-2893 (2005). [CrossRef] [PubMed]
  6. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004). [CrossRef] [PubMed]
  7. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004). [CrossRef] [PubMed]
  8. L. Zhou and A. W. Poon, "Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators," Opt. Express 14, 6851-6857 (2006). [CrossRef] [PubMed]
  9. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, "A continuous-wave Raman silicon laser," Nature 433, 725-728 (2005). [CrossRef] [PubMed]
  10. K. Vahala, Optical Microcavities, (World Scientific, Singapore, 2004). [CrossRef]
  11. T. Asano, B. S. Song, and S. Noda, "Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities," Opt. Express 14, 1996-2002 (2006). [CrossRef] [PubMed]
  12. M. Borselli, T. J. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13,1515-1530 (2005). [CrossRef] [PubMed]
  13. M. Soltani, S. Yegnanarayanan, and A. Adibi, "Ultra-high Q planar silicon microdisk resonators for Chip-Scale Silicon Photonics," Opt. Express 15, 4694-4704 (2007). [CrossRef] [PubMed]
  14. T. J. Johnson, M. Borselli, and O. Painter, "Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator," Opt. Express 14, 817-831(2006). [CrossRef] [PubMed]
  15. P. Barclay, K. Srinivasan, and O. Painter, "Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper," Opt. Express 13, 801-820 (2005). [CrossRef] [PubMed]
  16. T. Carmon, L. Yang, and K. J. Vahala, "Dynamical thermal behavior and thermal self stability of microcavities," Opt. Express 12, 4742-4750 (2004). [CrossRef] [PubMed]
  17. G. Priem, P. Dumon,W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets, "Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures," Opt. Express 13, 9623-9628 (2005). [CrossRef] [PubMed]
  18. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, J. D. Joannopoulos, "Coupling of modes analysis of resonant channel add-drop filtering," J. Lightwave Technol. 35, 1322-1331 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited