OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 17351–17361

Percolation of light through whispering gallery modes in 3D lattices of coupled microspheres

Vasily N. Astratov and Shashanka P. Ashili  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 17351-17361 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1742 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using techniques of flow-assisted self-assembly we synthesized three-dimensional (3D) lattices of dye-doped fluorescent (FL) 5 µm polystyrene spheres with 3% size dispersion with well controlled thickness from one monolayer up to 43 monolayers. In FL transmission spectra of such lattices we observed signatures of coupling between multiple spheres with nearly resonant whispering gallery modes (WGMs). These include (i) splitting of the WGM-related peaks with the magnitude 4.0–5.3 nm at the average wavelength 535 nm, (ii) pump dependence of FL transmission showing that the splitting is seen only above the threshold for lasing WGMs, and (iii) anomalously high transmission at the WGM peak wavelengths compared to the background for samples with thickness around 25 µm. We propose a qualitative interpretation of the observed WGM transport based on an analogy with percolation theory where the sites of the lattice (spheres) are connected with optical “bonds” which are present with probability depending on the spheres’ size dispersion. We predict that the WGM percolation threshold should be achievable in close packed 3D lattices formed by cavities with~103 quality factors of WGMs and with ~1% size dispersion. Such systems can be used for developing next generation of resonant sensors and arrayed-resonator light emitting devices.

© 2007 Optical Society of America

OCIS Codes
(230.5750) Optical devices : Resonators
(350.3950) Other areas of optics : Micro-optics
(230.4555) Optical devices : Coupled resonators

ToC Category:
Novel Concepts and Theory

Original Manuscript: October 15, 2007
Revised Manuscript: December 3, 2007
Manuscript Accepted: December 4, 2007
Published: December 10, 2007

Virtual Issues
Physics and Applications of Microresonators (2007) Optics Express

Vasily N. Astratov and Shashanka P. Ashili, "Percolation of light through whispering gallery modes in 3D lattices of coupled microspheres," Opt. Express 15, 17351-17361 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. W. Anderson, "Absence of diffusion in certain random lattices", Phys. Rev. 109, 1492-1505 (1958). [CrossRef]
  2. S. John, "Electromagnetic absorption in a disordered medium near a photon mobility edge," Phys. Rev. Lett. 53, 2169-2172 (1984). [CrossRef]
  3. M. Stoytchev and A. Z. Genack, "Measurement of the probability distribution of total transmission in random waveguides," Phys. Rev. Lett. 79, 309-312 (1997). [CrossRef]
  4. P. W. Brouwer, "Transmission through a many-channel random waveguide with absorption," Phys. Rev. B 57, 10526-10536 (1998). [CrossRef]
  5. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, "Localization of light in a disordered medium," Nature 390, 671-673 (1997). [CrossRef]
  6. M. Störzer, P. Gross, C. M. Aeggerter, and G. Maret, "Observation of the critical regime near Anderson localization of light," Phys. Rev. Lett. 96, 063904 (2006). [CrossRef] [PubMed]
  7. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, "Microring resonator channel dropping filters," J. Lightwave Technol. 15, 998-1005 (1997). [CrossRef]
  8. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  9. N. Stefanou, A. Modinos, "Impurity bands in photonic insulators," Phys. Rev. B,  57, 12127-12133 (1998). [CrossRef]
  10. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, "Tight-binding photonic molecule modes of resonant bispheres," Phys. Rev. Lett. 82, 4623-4626 (1999). [CrossRef]
  11. M.D. Barnes, S.M. Mahurin, A. Mehta, B.G. Sumpter, and D.W. Noid, "Three-Dimensional photonic "molecules" from sequentially attached polymer-blend microparticles," Phys. Rev. Lett. 88, 015508 (2002). [CrossRef] [PubMed]
  12. Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, "Photonic molecule lasing," Opt. Lett. 28, 2437-2439 (2003). [CrossRef] [PubMed]
  13. H. Guo, H. Chen, P. Ni, Q. Zhang, B. Cheng, and D. Zhang, "Transmission modulation in the passband of polystyrene photonic crystals," Appl. Phys. Lett. 82, 373-375 (2003). [CrossRef]
  14. V. N. Astratov, J. P. Franchak, and S. P. Ashili, "Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder," Appl. Phys. Lett. 85, 5508-5510 (2004). [CrossRef]
  15. Y. P. Rakovich, J. F. Donegan, M. Gerlach, A. L. Bradley, T. M. Connolly, J. J. Boland, N. Gaponik, and A. Rogach, "Fine structure of coupled optical modes in photonic molecules," Phys. Rev. A 70, 051801(R) (2004). [CrossRef]
  16. Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, "Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres," Phys. Rev. Lett. 94, 203905 (2005). [CrossRef] [PubMed]
  17. B. M. Möller, U. Woggon, and M. V. Artemyev, "Coupled-resonator optical waveguides doped with nanocrystals," Opt. Lett. 30, 2116-2118 (2005). [CrossRef] [PubMed]
  18. A. V. Kanaev, V. N. Astratov, and W. Cai, "Optical coupling at a distance between detuned spherical cavities," Appl. Phys. Lett. 88, 111111 (2006). [CrossRef]
  19. S. P. Ashili, V. N. Astratov, and E. C. H. Sykes, "The effects of inter-cavity separation on optical coupling in dielectric bispheres," Opt. Express 14, 9460-9466 (2006). [CrossRef] [PubMed]
  20. B. M. Möller, U. Woggon, and M. V. Artemyev, "Bloch modes and disorder phenomena in coupled resonator chains," Phys. Rev. B 75, 245327 (2007). [CrossRef]
  21. S. Deng, W. Cai, and V. N. Astratov, "Numerical study of light propagation via whispering gallery modes in microcylinder coupled resonator optical waveguides," Opt. Express 12, 6468-6480 (2004). [CrossRef] [PubMed]
  22. S. V. Boriskina, "Theoretical prediction of a dramatic Q-factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules," Opt. Lett. 31, 338-340 (2006). [CrossRef] [PubMed]
  23. J.E. Heebner, R. W. Boyd, and Q. H. Park, "SCISSOR solitons and other novel propagation effects in microresonator-midified waveguides," J. Opt. Soc. Am. B 19, 722-731 (2002). [CrossRef]
  24. A. Melloni, F. Morichetti, and M. Martinelli, "Linear and nonlinear pulse propagation in coupled resonator slow-wave optical structures," Opt. Quantum Electron. 35, 365-379 (2003). [CrossRef]
  25. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, "Very high-order microring resonator filters for WDM applications," IEEE Photon. Technol. Lett. 16, 2263-2265 (2004). [CrossRef]
  26. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, "Transmission and group delay of microring coupledresonator optical waveguides," Opt. Lett. 31, 456-458 (2006). [CrossRef] [PubMed]
  27. F. Xia, L. Sekaric, and Yu. A. Vlasov, "Ultra-compact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007). [CrossRef]
  28. A. B. Matsko and V. S. Ilchenko, "Optical resonators with whispering-gallery modes - part I: basics," IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006). [CrossRef]
  29. V. S. Ilchenko and A. B. Matsko, "Optical resonators with whispering-gallery modes - part II: applications," IEEE J. Sel. Top. Quantum Electron. 12, 15-32 (2006). [CrossRef]
  30. S. Mookherjea and A. Oh, "Effect of disorder on slow light velocity in optical slow-wave structures," Opt. Lett. 32, 289-291 (2007). [CrossRef] [PubMed]
  31. R. Albert and A.-L. Barabasi, "Statistical mechanics of complex networks," Rev. Mod. Phys. 74, 47-97 (2002). [CrossRef]
  32. C. D. Lorenz and R. M. Ziff, "Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and fcc lattices," Phys. Rev. E 57, 230-236 (1998). [CrossRef]
  33. M. F. Sykes and J. W. Essam, "Exact critical percolation probabilities for site and bond problems in two dimensions," J. of Math. Phys. (N.Y.) 5, 1117-1127 (1964). [CrossRef]
  34. B. Gates, D. Qin, and Y. Xia, "Assembly of nanoparticles into opaline structures over large areas," Adv. Mater. 11, 466-469 (1999). [CrossRef]
  35. V. N. Astratov, A. M. Adawi, S. Fricker, M. S. Skolnick, D. M. Whittaker, and P. N. Pusey, "Interplay of order and disorder in the optical properties of opal photonic crystals," Phys. Rev. B 66, 165215 (2002). [CrossRef]
  36. Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique," Opt. Express 12,1214-1220 (2004). [CrossRef] [PubMed]
  37. A. M. Kapitonov and V. N. Astratov, "Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities," Opt. Lett. 32, 409-411 (2007). [CrossRef] [PubMed]
  38. V. S. Ilchenko, P. S. Volkov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, "Strain-tunable high-Q optical microsphere resonator," Opt. Comm. 145, 86-90 (1998). [CrossRef]
  39. N. Le Thomas, U. Woggon, W. Langbein, and M. V. Artemyev, "Effect of a dielectric substrate on whispering-gallery-mode sensors," J. Opt. Soc. Am. B 23, 2361-2365 (2006). [CrossRef]
  40. H. C. van de Hulst, Light scattering by small particles (Dover Publications, Inc., New York, 1981).
  41. M. Sumetsky and B. J. Eggleton, "Modeling and optimization of complex photonic resonant cavity circuits," Opt. Express 11, 381-391 (2003). [CrossRef] [PubMed]
  42. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, "Distributed and localized feedback in microresonator sequences for linear and nonlinear optics," J. Opt. Soc. Am. B 21, 1818-1832 (2004). [CrossRef]
  43. M. Sumetsky, "Modelling of complicated nanometer resonant tunneling devices with quantum dots," J. Phys.: Condens. Matter 3, 2651-2664 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited