OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 25 — Dec. 10, 2007
  • pp: 17449–17457

Optimization of resonant optical sensors

M. Sumetsky  »View Author Affiliations

Optics Express, Vol. 15, Issue 25, pp. 17449-17457 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (165 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The sensitivity of the resonant optical sensors, which are based on measurement of the transmission and reflection spectra of optical resonators, is investigated. The following problem is addressed: When the losses of the resonator are known, what is the sharpest possible and the steepest possible shape of the resonant peaks that can be achieved experimentally? This optimization problem is solved for the case of a separated peak, which corresponds to a nondegenerated eigenvalue of the resonator. It is shown that the reflection spectrum possesses better sensitivity than the transmission spectrum. The model of the resonant sensor consisting of two coupled resonators is also considered. This model demonstrates that the sensitivity of transmission spectrum can be significantly increased by modification of the resonator structure. However, for the reflection spectrum, the best sensitivity is still given by a separated resonant peak.

© 2007 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(130.6010) Integrated optics : Sensors
(230.3990) Optical devices : Micro-optical devices
(230.5750) Optical devices : Resonators
(230.4555) Optical devices : Coupled resonators

ToC Category:

Original Manuscript: September 24, 2007
Revised Manuscript: October 24, 2007
Manuscript Accepted: October 24, 2007
Published: December 10, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics
Physics and Applications of Microresonators (2007) Optics Express

M. Sumetsky, "Optimization of resonant optical sensors," Opt. Express 15, 17449-17457 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Maystre and R. Dandliker, "Polarimetric fiber optical sensor with high sensitivity using a Fabry-Perot structure," Appl. Opt. 28, 1995-2000 (1989). [CrossRef] [PubMed]
  2. G. Gagliardi, S. De Nicola, P. Ferraro, and P. De Natale, "Interrogation of fiber Bragg-grating resonators by polarization-spectroscopy laser-frequency locking," Opt. Express 15, 3715-3728 (2007). [CrossRef] [PubMed]
  3. M. Noto, F. Vollmer, D. Keng, I. Teraoka, and S. Arnold, "Nanolayer characterization through wavelength multiplexing of a microsphere resonator," Opt. Lett. 30, 510-512 (2005). [CrossRef] [PubMed]
  4. I. M. White, N. M. Hanumegowda, and X. Fan, "Subfemtomole detection of small molecules with microsphere sensors," Opt. Lett. 30, 3189-3191 (2005). [CrossRef] [PubMed]
  5. Ashkenazi, C.-Y. Chao, L. J. Guo, and M. O’Donnell, "Ultrasound detection using polymer microring optical resonator," Appl. Phys. Lett. 85, 5418-5420 (2004). [CrossRef]
  6. A. Ksendzov, Y. Lin, "Integrated optics ring-resonator sensors for protein detection," Opt. Lett. 30, 3344-3346 (2005). [CrossRef]
  7. C-Y. Chao, W. Fung, L.J. Guo, "Polymer Microring Resonators for Biochemical Sensing Applications," IEEE J. Sel. Top. Quantum Electron. 12, 134-142 (2006). [CrossRef]
  8. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment, and Application," IEEE J. Lightwave Technol. 24, 242-250 (2006). [CrossRef]
  9. A. Yalçin, K.C. Popat, J.C. Aldridge, T.A Desai, J. Hryniewicz, N. Chbouki, B.E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M.S. Ünlü, B.B. Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006). [CrossRef]
  10. R. W. Boyd and J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt. 40, 5742-5747 (2001). [CrossRef]
  11. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Integrated optical microcavities for enhanced evanescent-wave spectroscopy," Opt. Lett.,  27, 1504-1506 (2002). [CrossRef]
  12. M. Sumetsky, "Optimization of optical ring resonator devices for sensing applications," Opt. Lett. 32, 2577-2579 (2007). [CrossRef] [PubMed]
  13. M. Sumetsky and B. Eggleton, "Modeling and optimization of complex photonic resonant cavity circuits," Opt. Express 11, 381-391 (2003). [CrossRef] [PubMed]
  14. M. Sumetskii, "Modeling of complicated nanometer resonant tunneling devices with quantum dots," J. Phys.: Condens. Matter,  3, 2651-2664 (1991). [CrossRef]
  15. M. Sumetskii, "Resistance resonances for resonant-tunneling structures of quantum dots," Phys. Rev. B,  48, 4586-4591 (1993). [CrossRef]
  16. M. Sumetskii, "Narrow current dip for the double quantum dot resonant tunneling structure with three leads: Sensitive nanometer Y-branch switch," Appl. Phys. Lett.,  63, 3185-3187 (1993). [CrossRef]
  17. T. Asano, W. Kunishi, B. Song, and S. Noda, "Time-domain response of point-defect cavities in two-dimensional photonic crystal slabs using picosecond light pulse," Appl. Phys. Lett. 88, 151102 (2006). [CrossRef]
  18. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nature Photonics 1, 49-52 (2006). [CrossRef]
  19. L. D. Landau and E. M. Lifshitz, Quantum mechanics, (Pergamon Press, 1958).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited