OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 17458–17481

Nonlinear and adiabatic control of high-Q photonic crystal nanocavities

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 17458-17481 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1748 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This article overviews our recent studies of ultrahigh-Q and ultrasmall photonic-crystal cavities, and their applications to nonlinear optical processing and novel adiabatic control of light. First, we show our latest achievements of ultrahigh-Q photonic-crystal nanocavities, and present extreme slow-light demonstration. Next, we show all-optical bistable switching and memory operations based on enhanced optical nonlinearity in these nanocavities with extremely low power, and discuss their applicability for realizing chip-scale all-optical logic, such as flip-flop. Finally, we introduce adiabatic tuning of high-Q nanocavities, which leads to novel wavelength conversion and another type of optical memories.

© 2007 Optical Society of America

OCIS Codes
(190.1450) Nonlinear optics : Bistability
(200.4660) Optics in computing : Optical logic
(230.5750) Optical devices : Resonators
(250.5300) Optoelectronics : Photonic integrated circuits
(230.5298) Optical devices : Photonic crystals

ToC Category:
Nonlinear Optics for Functional Devices and Applications

Original Manuscript: October 11, 2007
Revised Manuscript: November 29, 2007
Manuscript Accepted: December 3, 2007
Published: December 11, 2007

Virtual Issues
Focus Serial: Frontiers of Nonlinear Optics (2007) Optics Express

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, "Nonlinear and adiabatic control of high-Q photonic crystal nanocavities," Opt. Express 15, 17458-17481 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  2. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003). [CrossRef] [PubMed]
  3. B-S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nature Mat. 4, 207-210 (2005). [CrossRef]
  4. S. Noda, M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449 (2007). [CrossRef]
  5. E. Kuramochi, M. Notomi, M. Mitsugi, A. Shinya, and T. Tanabe, "Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect," Appl. Phys. Lett. 88, 041112 (2006). [CrossRef]
  6. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2007). [CrossRef]
  7. R. Herrmann, T. Sunner, T. Hein, A. Loffler, M. Kamp, and A. Forchel, "Ultrahigh-quality photonic crystal cavity in GaAs," Opt. Lett. 31, 1229-1231 (2006). [CrossRef] [PubMed]
  8. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  9. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  10. H-Y. Ryu, M. Notomi, E. Kuramochi, and T. Segawa, "Large spontaneous emission factor (>0.1) in the photonic crystal monopole-mode laser," Appl. Phys. Lett. 84, 1067 (2004). [CrossRef]
  11. K. Nozaki, S. Kita, and T. Baba, "Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser," Opt. Express 15, 7506-7514 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7506 [CrossRef] [PubMed]
  12. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007). [CrossRef] [PubMed]
  13. J. Vuckovic, M. Loncar, H. Mabuchi, A. Scherer, "Optimization of the Q factor in photonic crystal microcavities," IEEE J. Quantum Electron. 38, 850-856 (2002). [CrossRef]
  14. K. Srinivasan and O. Painter, "Momentum space design of high-Q photonic crystal optical cavities," Opt. Express 10, 670-684 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-15-670 [PubMed]
  15. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H-Y. Ryu, "Waveguides, resonators, and their coupled elements in photonic crystal slabs," Opt. Express 12, 1551-1561 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1551 [CrossRef] [PubMed]
  16. K. Inoshita and T. Baba, "Lasing at bend, branch and intersection of photonic crystal waveguides," Electron. Lett. 39, 844 (2003). [CrossRef]
  17. T. Tanabe, M. Notomi, E. Kuramochi, and H. Taniyama, "Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities," Opt. Express. 15, 7826-7839 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-12-7826 [CrossRef] [PubMed]
  18. T. Tanabe, M. Notomi, and E. Kuramochi, "Measurement of an ultra-high-Q photonic crystal nanocavity using a single-side-band frequency modulator," Electron. Lett. 43, 187-188 (2007). [CrossRef]
  19. S.G. Johnson, S. Fan, A. Mekis, and J. D. Joannopoulos, "Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap," Appl. Phys. Lett. 78, 3388-3390 (2001). [CrossRef]
  20. H-Y. Ryu, S-H. Kim, H-G. Park, J-K. Hwang, and Y-H Lee, "Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode," Appl. Phys. Lett. 80, 3883-3885 (2002). [CrossRef]
  21. M. Notomi, H. Suzuki, T. Tamamura, K. Edagawa, "Lasing action due to the two-dimensional quasiperiodicity of photonic quasicrystals with a Penrose lattice," Phys. Rev. Lett. 92, 123906 (2004). [CrossRef] [PubMed]
  22. H-Y. Ryu, M. Notomi, and Y-H. Lee, "High quality-factor and small mode-volume hexapole modes in photonic crystal slab nano-cavities," Appl. Phys. Lett. 83, 4294-4296 (2003). [CrossRef]
  23. G-H. Kim, Y-H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6624 [CrossRef] [PubMed]
  24. T. Tanabe, A. Shinya, E. Kuramochi, S. Kondo, H. Taniyama, and M. Notomi, "Single point defect photonic crystal nanocavity with ultrahigh quality factor achieved by using hexapole mode," Appl. Phys. Lett. 91, 021110 (2007). [CrossRef]
  25. T. Baba and D. Mori, "Slowlight engineering in photonic crystals," J. Phys. D: Appl. Phys.  40, 2659-2665 (2007). [CrossRef]
  26. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  27. S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, "Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides," Opt. Express 15, 3543-3549 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3543 [CrossRef] [PubMed]
  28. A. Yariv, Y. Xu, R. K. Lee, A. Scherer, " Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  29. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318(R) (2005).
  30. E. Kuramochi, M. Notomi, S. Hughes, L. Ramunno, G. Kira, S. Mitsugi, A. Shinya, and T. Watanabe, "Scattering loss of photonic crystal waveguides and nanocavities induced by structural disorder," Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR), Japan, July 11-15, CTuE1-1, 2005. (pp. 10-11)
  31. S. Mitsugi, A. Shinya, E. Kuramochi, M. Notomi, T. Tsuchizawa, and T. Watanabe, "Resonant tunneling wavelength filters with high Q and high transmittance based on photonic crystal slabs," in Proceedings of 16th Annual Meeting of IEEE LEOS (Institute of Electrical and Electronics Engineers, New York, 2003), pp. 214-215.
  32. M. Soljacic and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Maters. 3, 211-219 (2004), and references therein. [CrossRef] [PubMed]
  33. H. M. Gibbs, Optical bistability: controlling light with light. (Academic Press, Orlando, 1985).
  34. K. Asakawa, et al. "Photonic crystal and quantum dot technologies for all-optical switch and logic device," New J. Phys. 8, 208 (2006). [CrossRef]
  35. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, "Optical bistable switching of Si high-Q photonic-crystal nanocavities," Opt. Express 13, 2678 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-7-2678 [CrossRef] [PubMed]
  36. G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, and F. Van Milligen, "Microsecond roomtemperature optical bistability and crosstalk studies in ZnS and ZnSe interference filters with visible light and milliwatt powers," Appl. Phys. Lett. 45, 1031-1033 (1984). [CrossRef]
  37. V. R. Almeida and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29, 2387-2389 (2004). [CrossRef] [PubMed]
  38. P. M. Johnson, A. F. Koenderinc, and W. L. Vos, "Ultrafast switching of photonic density of states in photonic crystals," Phys. Rev. B 66, 081102(R) (2002).
  39. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005). [CrossRef]
  40. V. Almeida, C. Barrios, R. Panepucci, and M. Lipson, Nature 431, 1081-1083 (2004). [CrossRef] [PubMed]
  41. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, "Fast bistable all-optical switch and memory on silicon photonic crystal on-chip,' Opt. Lett. 30, 2575-2577 (2005). [CrossRef] [PubMed]
  42. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, "Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities," Appl. Phys. Lett. 90, 031115 (2007). [CrossRef]
  43. S. D. Smith, "Optical bistability, photonic logic, and optical computation," Appl. Opt. 25, 1550-1564 (1986). [CrossRef] [PubMed]
  44. H. Tsuda and T. Kurokawa, "Construction of an all-optical flip-flop by combination of two optical triodes," Appl. Phys. Lett. 57, 1724-1726 (1990). [CrossRef]
  45. S. Mitsugi, A. Shinya, T. Tanabe, M. Notomi, and I. Yokohama, "Design and FDTD analysis of micro photonic flip-flop based on 2D photonic crystal slab," in Extended abstracts of the 52nd spring meeting of the Japan Society of Applied Physics, 30p-YV-11, p.1197, Mar. 30, 2005.
  46. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, "Optimal bistable switching in nonlinear photonic crystals," Phys. Rev. E 66, 055601(R) (2002). [CrossRef]
  47. A. Shinya, S. Mitsugi, T. Tanabe, M. Notomi, I. Yokohama, H. Takara, and S. Kawanishi, "All-optical flipflop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab," Opt. Express 14, 1230-1235 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1230 [CrossRef] [PubMed]
  48. M. Fleischhauer and M. D. Lukin, "Quantum memory for photons: Dark -state polaritons," Phys. Rev. A 65, 022314 (2002). [CrossRef]
  49. M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92, 083901 (2004). [CrossRef] [PubMed]
  50. B. P. J. Bret, T. L. Sonnemans, and T. W. Hijmans, "Capturing a light pulse in a short high-finesse cavity," Phys. Rev. A 68, 023807 (2003). [CrossRef]
  51. M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803(R) (2006).
  52. M. Notomi, H. Taniyama, S. Mitsugi, E. Kuramochi, "Optomechanical wavelength and energy conversion in high-Q double-layer cavities of photonic crystal slabs," Phys. Rev. Lett. 97, 023903 (2006). [CrossRef] [PubMed]
  53. S. F. Preble, Q. Xu, and M. Lipson, "Changing the colour of light in a silicon resonator," Nat. Photonics 1, 293 (2007). [CrossRef]
  54. M. Notomi, T. Tanabe, A. Shinya, S. Mitsugi, E. Kuramochi, and M. Morita, "Dynamic nonlinear control of resonator-waveguide coupled system in photonic crystals," Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR), Japan, July 11-15, CWe4-1, 2005. (pp. 1020-1021).
  55. M. Morita, M. Notomi, S. Mitsugi, and A. Shinya, "Dynamic Q control in photonic-crystal-slab resonatorwaveguide coupled system," in Extended abstracts of the 52nd spring meeting of the Japan Society of Applied Physics, 31p-YV-15, p.1208, Mar. 30, 2005.
  56. M. Morita, M. Notomi, S. Mitsugi, and A. Shinya, "Dynamic Q control in photonic-crystal-slab resonatorwaveguide coupled system (2)," in Extended abstracts of the 66th autumn meeting of the Japan Society of Applied Physics, 9p-H-11, p.924, Sept. 9, 2005.
  57. H. A. Haus, Waves and fields in optoelectronics (Prince-Hall, New Jersey, 1984).
  58. M. F. Yanik and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004). [CrossRef] [PubMed]
  59. Q. Xu, P. Dong and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nat. Phys. 3, 406 (2007). [CrossRef]
  60. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nat. Maters. (2007) doi:10.1038/nmat1994. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited