OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 17482–17493

Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains

K. B. Crozier, E. Togan, E. Simsek, and T. Yang  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 17482-17493 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (769 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The dispersion relations of the surface plasmon modes of metal nanoparticle chains are measured, and compared with theory. The theoretical model includes the effects of retardation, radiative damping and dynamic depolarization due to the finite size of the nanoparticles. The results reveal that, in addition to one longitudinal and one transverse mode, there is a third mode, which has not been previously reported.

© 2007 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: July 23, 2007
Revised Manuscript: September 23, 2007
Manuscript Accepted: December 4, 2007
Published: December 11, 2007

K. B. Crozier, E. Togan, E. Simsek, and T. Yang, "Experimental measurement of the dispersion relations of the surface plasmon modes of metal nanoparticle chains," Opt. Express 15, 17482-17493 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
  2. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett. 22, 475-7 (1997). [CrossRef] [PubMed]
  3. M. Quinten, A. Leitner, J. R. Krenn and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  4. M. L Brongersma, J. W. Hartman, and H. A. Atwater, "Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit," Phys. Rev. B 62, R16356-16359 (2000). [CrossRef]
  5. S. A. Maier, P. G. Kik and H. A. Atwater, "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett. 81, 1714-1716 (2002). [CrossRef]
  6. C. Girard and R. Quidant, "Near-field optical transmittance of metal particle chain waveguides," Opt. Express 12, 6141-6146 (2004). [CrossRef] [PubMed]
  7. A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402-1-4 (2006). [CrossRef]
  8. V. A. Markel, "Coupled-dipole approach to scattering of light from a one-dimensional periodic dipole structure," J. Mod. Opt. 40, 2281-2291 (1993). [CrossRef]
  9. A. L. Burin, H. Cao, G. C. Schatz, and M. A. Ratner, "High-quality optical modes in low-dimensional arrays of nanoparticles: application to random lasers," J. Opt. Soc. Am. B 21, 121-131 (2004). [CrossRef]
  10. M. Guillon, "Field enhancement in a chain of optically bound dipoles," Opt. Express 14, 3045-3055 (2006). [CrossRef] [PubMed]
  11. S. Zou and G. C. Schatz, "Narrow plasmonic/photonic extinction and scattering lineshapes for one and two dimensional silver nanoparticle arrays," J. Chem. Phys. 121, 12606-12612 (2004). [CrossRef] [PubMed]
  12. C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, "Resonator mode in chains of silver spheres and its possible application," Phys. Rev. E 72, 066606-1-10 (2005). [CrossRef]
  13. R. Quidant, C. Girard, J. C. Weeber, and A. Dereux, "Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains," Phys. Rev. B 69, 085407-1-7 (2004). [CrossRef]
  14. K. Li, M. I. Stockman, and D. J. Bergman, "Self-similar chain of metal nanospheres as an efficient nanolens" Phys. Rev. Lett. 91, 227402-1-4 (2003). [CrossRef]
  15. K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, "Optical antennas: resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003). [CrossRef]
  16. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck and W. E. Moerner, "Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles," Phys. Rev. B 72, 165409-1-6 (2005). [CrossRef]
  17. E. Cubukcu, E. A. Kort, K. B. Crozier, F. Capasso, "Plasmonic Laser Antenna," Appl. Phys. Lett. 89, 093120-1-3 (2006). [CrossRef]
  18. T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, and T. Nishida, "Writing 40 nm marks by using a beaked metallic plate near-field optical probe," Opt. Lett. 31, 259-261 (2006). [CrossRef] [PubMed]
  19. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter 14, R597-624 (2002). [CrossRef]
  20. C. Sonnichsen, B. M. Reinhard, J. Liphard and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotechnol. 23, 741-745 (2005). [CrossRef] [PubMed]
  21. S. Y. Park and D. Stroud, "Surface-plasmon dispersion relations in chains of metallic nanoparticles: an exact quasistatic calculation," Phys. Rev. B 69, 125418-1-7 (2004). [CrossRef]
  22. W. H Weber and G. W. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125429 (2004). [CrossRef]
  23. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, "Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy," Phys. Rev. B 65, 193408 (2002). [CrossRef]
  24. Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1071 (2004). [CrossRef]
  25. K. B. Crozier and E. Togan, "Experimental measurement of the dispersion relations of metal nanoparticle chains," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America 2007) paper QThB4. http://www.opticsinfobase.org/abstract.cfm?URI=QELS-2007-QThB4
  26. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C Schatz, "The optical properties of metal nanoparticles: the influence of the size, shape and dielectric environment," J. Phys. Chem. B. 107, 668-677 (2003). [CrossRef]
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  28. FDTD software is FullWave from RSoft Design Group, Ossining, New York.
  29. A. D. Rakic, A. B. Djurisic, J. M. Elazar and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 37, 5271-5283 (1998). [CrossRef]
  30. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, 1991).
  31. A. Stratton, Electromagnetic Theory, (McGraw Hill, 1941).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited