OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 17562–17569

High-order dispersion in photonic crystal waveguides

Solomon Assefa and Yurii A. Vlasov  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 17562-17569 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (4206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-order dispersion in the slow-light regime of photonic crystal (PhC) waveguides was measured by utilizing integrated Mach-Zehnder interferometer (MZI) structures, and compared with theoretical results obtained from 3D plane-wave calculations. Highly accurate measurements of group-velocity dispersion (GVD), third-order dispersion (TOD) and fourth-order dispersion (FOD) at high group-index (ng ) values were enabled by minimizing external phase-distortions and increasing signal-to-noise ratio in the MZI. The experimental results for GVD, TOD, and FOD parameters at ng ~100 were ~102ps2/mm, ~104ps3/mm, and ~105ps3/mm respectively. The results emphasize the importance of taking into consideration the effect of TOD and FOD on pulse broadening in the slow-light regime.

© 2007 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Photonic Crystals

Original Manuscript: October 15, 2007
Revised Manuscript: December 6, 2007
Manuscript Accepted: December 7, 2007
Published: December 11, 2007

Solomon Assefa and Yurii A. Vlasov, "High-order dispersion in photonic crystal waveguides," Opt. Express 15, 17562-17569 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yariv, Y. Xu, R. Lee, and A. Sherer, "Coupled-resonator optical waveguides: a proposal and analysis," Opt. Lett. 24, 711 (1999),http://www.opticsinfobase.org/abstract.cfm?URI=ol-24-11-711. [CrossRef]
  2. M. Povinelli, S. Johnson, and J. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-7145. [CrossRef] [PubMed]
  3. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004) [CrossRef] [PubMed]
  4. Yu. A. Vlasov, M. O’Boyle, H. F. Hamann, S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005). [CrossRef] [PubMed]
  5. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, "Flatband slow light in photonic crystals featuring spatial pulse compression and terahertz bandwidth," Opt. Express 15, 219 (2006),http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-1-219. [CrossRef]
  6. Y. Tanaka, H. Kuwatsuka, H. Kawashima, N. Ikeda, Y. Sugimoto, T. Hasama, and H. Ishikawa, "Effect of third-order dispersion on subpicosecond pulse propagation in photonic-crystal waveguides," Appl. Phys. Lett. 89, 131101 (2006). [CrossRef]
  7. D. Mori and T. Baba, "Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide," Opt. Express 13, 9398 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9398. [CrossRef] [PubMed]
  8. L. A. Frandesen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express 14, 9444 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9444. [CrossRef]
  9. S. -C. Huang, M. Kato, E. Kuramochi, C. -P, Lee, and M. Notomi, "Time-domain and spectral-domain investigation of inflection-point slow-light in photonic crystal coupled waveguides," Opt. Express 15, 3543 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3543. [CrossRef] [PubMed]
  10. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J.P. Korterik, N. Ideda, N.F. van Hulst, K. Asakawa, and L. Kuipers, "The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides," Opt. Express 14, 1658 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-4-1658. [CrossRef] [PubMed]
  11. S. McNab, N. Moll and Y. Vlasov, "Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides," Opt. Express 11, 2927 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-22-2927. [CrossRef] [PubMed]
  12. Y. Vlasov and S. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-8-1622. [CrossRef] [PubMed]
  13. L. Sekaric, S. J. McNab, Y. A. Vlasov, "Y-splitters in photonic wires and photonic crystal waveguides," VI Symposium on Photonic and Electromagnetic Crystal Structures, Crete, June 19-24, 2005, available at http://www.research.ibm.com/photonics/posters/splittters_pecsvi.pdf
  14. E. Dulkeith, S. J. McNab and Y. A. Vlasov "Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides," Phys. Rev. B 72, 115102 (2005). [CrossRef]
  15. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173 (2001), http://www.opticsinfobase.org/abstract.cfm?URI=oe-8-3-173. [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited