OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 17699–17708

Absorption-induced trapping in an anisotropic magneto-optical trap

Joel A. Greenberg, M. Oriá, Andrew M.C. Dawes, and Daniel J. Gauthier  »View Author Affiliations

Optics Express, Vol. 15, Issue 26, pp. 17699-17708 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (284 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a simple anisotropic magneto-optical trap for neutral atoms that produces a large sample of cold atoms confined in a cylindrically-shaped volume with a high aspect ratio (100:1). Due to the large number of trapped atoms, the laser beams that propagate along the optically thick axis of the trap to cool the atoms are substantially attenuated. We demonstrate that the resulting intensity imbalance produces a net force that spatially localizes the atoms. This limits both the trap length and the total number of trapped atoms. Rotating the cooling beams by a small angle relative to the trap axis avoids the problem of attenuation, and atoms can be trapped throughout the entire available trapping volume. Numerical and experimental results are reported that demonstrate the effects of absorption in an anisotropic trap, and a steady-state, line-center optical path length of 55 is measured for a probe beam propagating along the length of the trap.

© 2007 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(190.0190) Nonlinear optics : Nonlinear optics
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:

Original Manuscript: October 15, 2007
Revised Manuscript: December 3, 2007
Manuscript Accepted: December 7, 2007
Published: December 12, 2007

Joel A. Greenberg, Marcos Oria, Andrew M. C. Dawes, and Daniel J. Gauthier, "Absorption-induced trapping in an anisotropic magneto-optical trap," Opt. Express 15, 17699-17708 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Lambrecht, T. Coudreau, A.M. Steinberg, E. Giacobino, "Squeezing with Cold Atoms," Europhys. Lett. 36, 93 (1996). [CrossRef]
  2. G. Labeyrie, G.L. Gattobigio, T. Chaneli’ere, G.L. Lippi, T. Ackemann, R. Kaiser, "Nonlinear Lensing Mechanisms in a Cloud of Cold Atoms," Euro. Phys. Jn. D. 41, 337 (2007). [CrossRef]
  3. Y. Wang, M. Saffman, "Experimental Study of Nonlinear Focusing in a Magneto-optical Trap Using a Z-scan Technique," Phys. Rev. A 70, 013801 (2004). [CrossRef]
  4. M. Vengalatorre, M. Prentiss, "Radial Confinement of Light in an Ultracold Anisotropic Medium," Phys. Rev. Lett. 95, 243601 (2005). [CrossRef]
  5. G.L. Gattobigio, F. Michaud, J. Javaloyes, J.W.R. Tabosa, R. Kaiser, "Bunching-induced Asymmetry in Degenerate Four-wave Mixing with Cold Atoms," Phys. Rev. A 74, 043407 (2006). [CrossRef]
  6. K.R. Hansen, K. Mølmer, "Trapping of Light Pulses in Ensembles of Stationary ? Atoms," Phys. Rev. A 75, 053802 (2007). [CrossRef]
  7. H.W. Chan, A.T. Black, V. Vuleti’c, "Observation of Collective-Emission-Induced Cooling of Atoms in an Optical Cavity," Phys. Rev. Lett. 90, 063003 (2003). [CrossRef] [PubMed]
  8. A.T. Black, H.W. Chan, V. Vuleti’c, "Observation of Collective Friction Forces due to Spatial Self-Organization of Atoms: From Rayleigh to Bragg Scattering," Phys. Rev. Lett. 91, 203001 (2003). [CrossRef] [PubMed]
  9. R. Bonificio, L. De Salvo, "Collective Atomic Recoil Laser (CARL) Optical Gain Without Inversion by Collective Atomic Recoil and Self-bunching of Two-level Atoms," Nucl. Instrum. Methods Phys. Res. Sec. A 341, 360 (1994). [CrossRef]
  10. G. Grynberg, C. Robbiliard, "Cold Atoms in Dissipative Optical Lattices," Phys. Rep. 3, 355 (2001).
  11. W. Ketterle, K. Davis, M. Joffe, A. Martin, D. Pritchard, "High Densities of Cold Atoms in a Dark Spontaneous-Force Optical Trap," Phys. Rev. Lett. 70, 2253 (1993). [CrossRef] [PubMed]
  12. K.E. Gibble, S. Kasapi, S. Chu, "Improved Magneto-optic trapping in a Vapor Cell," Opt. Lett. 17, 526 (1992). [CrossRef] [PubMed]
  13. Y. Castin, J.I. Cirac, M. Lewenstein, "Reabsorption of Light by Trapped Atoms," Phys. Rev. Lett. 80, 5305 (1998). [CrossRef]
  14. M. Vengalatorre, W. Rooijakkers, M. Prentiss, "Ferromagnetic Atom Guide with In Situ Loading," Phys. Rev. A 66, 053403 (2002). [CrossRef]
  15. M. Vengalatorre, W. Rooijakkers, R. Conroy, M. Prentiss, "Suppression of Photon Rescattering due to Spatial Anisotropy in a Cold Atomic Gas," Phys. Rev. A 67, 063412 (2003). [CrossRef]
  16. M. Vengalatorre, M. Prentiss, "Recoil-induced Resonances in the High-gain Regime," Phy. Rev. A, 72, 1(R) (2005). [CrossRef]
  17. T. Ackemann, W. Lange, "Optical Pattern Formation in Alkali Metal Vapors: Mechanisms, Phenomena and Use." Appl. Phys. B 72, 21 (2001). [CrossRef]
  18. A.M.C. Dawes, L. Illing, S. M. Clark, D. J. Gauthier, "All Optical Switching in Rubidium Vapor," Science 308, 672 (2005). [CrossRef] [PubMed]
  19. S. Wu, E. Su, M. Prentiss, "Time Domain de Broglie Wave Interferometry Along a Magnetic Guide," Eur. Phys. J. D. 35, 111 (2005). [CrossRef]
  20. K. L. Corwin, Z. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, "Frequency-Stabilized Diode Laser with the Zeeman Shift in an Atomic Vapor," Appl. Opt. 37, 3295 (1998). [CrossRef]
  21. E.A. Donley, T.P. Heavner, F. Levi, M.O. Tataw, S.R. Jefferts, "Double-pass Acousto-optic Modulator System," Rev. Sci. Inst. 76, 063112 (2005). [CrossRef]
  22. J. Dalibard, "Laser Cooling of an Optically Thick Gas: The Simplest Radiation Pressure Trap?," Opt. Commun. 68, 203 (1988). [CrossRef]
  23. M. Vengalatorre, private communication (2007).
  24. H. J. Metcalf, P. van der Straten, "Laser Cooling and Trapping," (Springer-Verlag, New York, NY, 1999), Ch. 11.4.2.
  25. J. Guo, P.R. Berman, B. Dubetsky, "Recoil-induced Resonances in Nonlinear Spectroscopy," Phys. Rev. A 46, 1426 (1993). [CrossRef]
  26. M. Brzozowska, T. Brzozowski, J. Zachorowski, W. Gawlik, "Nondestructive Study of Nonequilibrium States of Cold Trapped Atoms," Phys. Rev. A 72, 061401 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited