OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 17709–17714

When does the choice of the refractive index of a linear, homogeneous, isotropic, active, dielectric medium matter?

Akhlesh Lakhtakia, Joseph B. Geddes III, and Tom G. Mackay  »View Author Affiliations


Optics Express, Vol. 15, Issue 26, pp. 17709-17714 (2007)
http://dx.doi.org/10.1364/OE.15.017709


View Full Text Article

Enhanced HTML    Acrobat PDF (78 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two choices are possible for the refractive index of a linear, homogeneous, isotropic, active, dielectric material. Either of the choices is adequate for obtaining frequency–domain solutions for (i) scattering by slabs, spheres, and other objects of bounded extent; (ii) guided–wave propagation in homogeneously filled, cross–sectionally uniform, straight waveguide sections with perfectly conducting walls; and (iii) image formation due to flat lenses. The correct choice does matter for the half–space problem, but that problem is not realistic.

© 2007 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(160.4760) Materials : Optical properties
(260.2030) Physical optics : Dispersion
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

History
Original Manuscript: November 13, 2007
Revised Manuscript: December 2, 2007
Manuscript Accepted: December 7, 2007
Published: December 12, 2007

Citation
Akhlesh Lakhtakia, Joseph B. Geddes III, and Tom G. Mackay, "When does the choice of the refractive index of a linear, homogeneous, isotropic, active, dielectric medium matter?," Opt. Express 15, 17709-17714 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17709


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. P. Silverman, And Yet It Moves, pp. 151-163 (Cambridge Univ. Press, New York, NY, USA, 1993).
  2. J. Fan, A. Dogariu, and L. J. Wang, "Amplified total internal reflection," Opt. Express 11, 299-308 (2003). [CrossRef] [PubMed]
  3. S. A. Ramakrishna, "On the dual symmetry between absorbing and amplifying random media," Pramana-J. Phys. 62, 1273-1279 (2004). [CrossRef]
  4. S. A. Ramakrishna and O. J. F. Martin, "Resolving the wave vector in negative refractive index media," Opt. Lett. 30, 2626-2628 (2005). [CrossRef] [PubMed]
  5. T. G. Mackay and A. Lakhtakia, "Comment on ‘Negative refraction at optical frequencies in nonmagnetic two-component molecular media’," Phys. Rev. Lett. 96, 159701 (2006). [CrossRef] [PubMed]
  6. A. N. Grigorenko, "Negative refractive index in artificial metamaterials," Opt. Lett. 31, 2483-2485 (2006). [CrossRef] [PubMed]
  7. J. Wei and M. Xiao, "Electric and magnetic losses and gains in determining the sign of refractive index," Opt. Commun. 270, 455-464 (2007). [CrossRef]
  8. Y.-F. Chen, P. Fischer, and F. W. Wise, "Sign of the refractive index in a gain medium with negative permittivity and permeability," J. Opt. Soc. Am. B 23, 45-50 (2006). [CrossRef]
  9. J. Skaar, "On resolving the refractive index and the wave vector," Opt. Lett. 31, 3372-3374 (2006). [CrossRef] [PubMed]
  10. V. U. Nazarov and Y.-C. Chang, "Resolving the wave vector and the refractive index from the coefficient of reflectance," Opt. Lett. 32, 2939-2941 (2007). [CrossRef] [PubMed]
  11. V. U. Nazarov and Y.-C. Chang, "Resolving the wave-vector and the refractive index from the coefficient of reflectance: erratum," Opt. Lett. 32, 3345 (2007). [CrossRef]
  12. J. B. GeddesIII, T. G. Mackay, and A. Lakhtakia, "On the refractive index for a nonmagnetic two-component medium: Resolution of a controversy," Opt. Commun. 280, 120-125 (2007). [CrossRef]
  13. B. Nistad and J. Skaar, "Simulations and realizations of active right-handed metamaterials with negative refractive index," Opt. Express 15, 10935-10946 (2007). [CrossRef] [PubMed]
  14. Y.-F. Chen, P. Fischer, and F. W. Wise, "Negative refraction at optical frequencies in nonmagnetic two-component molecular media," Phys. Rev. Lett. 95, 067402 (2005). [CrossRef] [PubMed]
  15. J. Skaar, "Fresnel equations and the refractive index of active media," Phys. Rev. E  73, 026605(2006). [CrossRef]
  16. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, pp. 89-101 (Wiley, New York, NY, USA, 1983).
  17. A. Lakhtakia and G.W. Mulholland, "On two numerical techniques for light scattering by dielectric agglomerated structures," J. Res. Nat. Inst. Stand. Technol. 98, 699-716 (1993).
  18. J. Van Bladel, Electromagnetic Fields, Chap. 13 (Hemisphere, Washington, DC, USA, 1985).
  19. C. T. A. Johnk, Engineering Electromagnetic Fields and Waves, Sec. 9-3 (Wiley, New York, NY, USA, 1975).
  20. S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005). [CrossRef]
  21. R. W. Ziolkowski and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E 64, 056625 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited