OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 26 — Dec. 24, 2007
  • pp: 17736–17746

Optical scattering resonances of single and coupled dimer plasmonic nanoantennas

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas  »View Author Affiliations


Optics Express, Vol. 15, Issue 26, pp. 17736-17746 (2007)
http://dx.doi.org/10.1364/OE.15.017736


View Full Text Article

Enhanced HTML    Acrobat PDF (516 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical resonances of individual plasmonic dimer antennas are investigated using confocal darkfield spectroscopy. Experiments on an array of antennas with varying arm lengths and interparticle gap sizes show large spectral shifts of the plasmon modes due to a combination of geometrical resonances and plasmon hybridization. The resonances of the coupled-dimer antennas are considerably broadened compared to those of single nanorods, which is attributed to a superradiant damping of the coupled antenna modes. The scattering spectra are compared with electrodynamic model calculations that demonstrate both the near-field and far-field characteristics of a half-wave antenna.

© 2007 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(350.4990) Other areas of optics : Particles

ToC Category:
Optics at Surfaces

History
Original Manuscript: October 19, 2007
Revised Manuscript: December 10, 2007
Manuscript Accepted: December 10, 2007
Published: December 12, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas, "Optical scattering resonances of single and coupled dimer plasmonic nanoantennas," Opt. Express 15, 17736-17746 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-26-17736


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Kreibig and M. Volmer, "Optical Properties of Metal Clusters," Springer Series in Material Science Vol. 25 (Springer-Verlag, Berlin, 1995).
  2. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, "Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers," Science 297,1160 (2002). [CrossRef] [PubMed]
  3. A. D. McFarland and R. P. van Duyne, "Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity," Nano Lett. 3, 1057 (2003). [CrossRef]
  4. W. L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon sub-wavelength optics," Nature 424, 824 (2003). [CrossRef] [PubMed]
  5. T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, "Plasmonic Band Gaps and Trapped Plasmons on Nanostructured Metal Surfaces," Phys. Rev. Lett. 95, 116802 (2005). [CrossRef] [PubMed]
  6. E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189 (2006). [CrossRef] [PubMed]
  7. J.C. Ashley and L.C. Emerson, ‘Dispersion relations for non-radiative surface plasmons on cylinders,’ Surf. Sci. 41, 615 (1974). [CrossRef]
  8. J.-C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J.-P. Goudonnet, "Plasmon polaritons of metallic nanowires for controlling submicron propagation of light," Phys. Rev. B 60, 9061 (1999). [CrossRef]
  9. J. R. Krenn, G. Schider, W. Rechberger, B. Lamprecht, A. Leitner,F. R. Aussenegg, and J. C. Weeber, "Design of multipolar plasmon excitations in silver nanoparticles," Appl. Phys. Lett. 77(12), 3379 (2000). [CrossRef]
  10. K. Imura, T. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Phys. Chem. B 10816344 (2004). [CrossRef]
  11. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, "Silver Nanowires as Surface Plasmon Resonators," Phys. Rev. Lett. 95, 257403 (2005) [CrossRef] [PubMed]
  12. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garc’ýa de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005). [CrossRef]
  13. P. M¨uhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant optical antennas," Science 308, 1607 (2005). [CrossRef] [PubMed]
  14. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, andW. E. Moerner, "Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas," Phys. Rev. Lett. 94, 017402 (2005). [CrossRef] [PubMed]
  15. J. N. Farahani, D.W. Pohl, H.-J. Eisler, and B. Hecht, "Single quantum dot coupled to a scanning optical antenna: a tunable superemitter," Phys. Rev. Lett. 95, 017402 (2005). [CrossRef] [PubMed]
  16. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, "Near-field excitation of nanoantenna resonance," Opt. Express 15,13682 (2007). [CrossRef] [PubMed]
  17. T. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "l/4 Resonance of an Optical Monopole Antenna probed by single molecule fluorescence," Nano Lett. 7, 28 (2007). [CrossRef] [PubMed]
  18. O. L. Muskens, V. Giannini, J. A. S’anchez Gil, and J. G’omez Rivas, "Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas," Nano Lett. 7, 2871 (2007). [CrossRef] [PubMed]
  19. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley-VCH, 1998). [CrossRef]
  20. S. Link and M. A. El-Sayed, "Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles," J. Phys. Chem. B 103, 8410 (1999). [CrossRef]
  21. C. S¨onnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, "Drastic reduction of plasmon damping in gold nanorods," Phys. Rev. Lett. 88, 077402 (2002). [CrossRef] [PubMed]
  22. A. Brioude, X. C. Jiang, M. P. Pileni, "Optical Properites of gold nanorods:DDA simulations supported by experiments," J. Phys. Chem. B 109, 13138 (2005). [CrossRef]
  23. S. W. Prescott, P. Mulvaney, "Gold Nanorod Extinction Spectra," J. Appl. Phys. 99,123504 (2006) [CrossRef]
  24. L. Novotny, "Effective wavelength scaling for optical antennas," Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  25. P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B 6, 4370 (1972). [CrossRef]
  26. T. Atay, J.-H. Song, and A. V. Nurmikko, "Strong interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime," Nano Lett. 4, 1627 (2004). [CrossRef]
  27. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Kll, S. Zou, and G. C. Schatz, "Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions," J. Phys. Chem. B 109,1079, (2005). [CrossRef]
  28. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. Garc’ýa de Abajo, "Optics in nearly touching metallic nanoparticles: singular response in the limit of touching dimers," Opt. Express 149988 (2006). [CrossRef] [PubMed]
  29. T. Sondergaard and S. I. Bozhevolnyi, "Nano-strip Optical Resonators," Opt. Express 15,4198 (2007). [CrossRef] [PubMed]
  30. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties. of two interacting gold nanoparticles," Opt. Commun. 220, 137 (2003). [CrossRef]
  31. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, "Interparticle coupling effects on plasmon resonances of nanogold particles," Nano Lett. 3, 1087 (2003). [CrossRef]
  32. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M.I. Stockman, "Plasmon hybridization in nanoparticle dimers," Nano Lett. 4, 899 (2005). [CrossRef]
  33. J. P. Kottmann and O. J. F. Martin, "Retardation-induced plasmon resonances in coupled nanoparticles," Opt. Lett. 26, 1096 (2001). [CrossRef]
  34. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (General Publishing Company, 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited